• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 關于DNA解旋酶轉錄的介紹

    1、 不需要: DNA復制需要解旋酶,可是與DNA復制相類似的轉錄過程并不需要解旋酶,基因的轉錄是由RNA聚合酶催化進行的。基因的上游具有結合RNA聚合酶的區域,叫做啟動子。啟動子是一段具有特定序列的DNA,具有和RNA聚合酶特異性結合的位點,決定了基因轉錄的起始位點。RNA聚合酶與啟動子結合后,在特定區域將DNA雙螺旋兩條鏈之間的氫鍵斷開,使DNA解旋,形成單鏈區,以非編碼鏈為模板合成RNA互補鏈的過程就開始了。 2、需要:在真核細胞中,RNA聚合酶通常不能單獨發揮轉錄作用,而需要與外切酶等其他轉錄因子共同協作,有些輔助功能的轉錄因子就是解旋酶。 參與典型的真核生物轉錄開始過程的轉錄因子TFII-H和TFII-F有ATPase活性幫助轉錄起始復合物“撬開”DNA雙鏈,但是TFII-H隨后表現磷酸化活性,使得RNA聚合酶II從通用轉錄因子上釋放,執行轉錄延伸階段。......閱讀全文

    關于DNA解旋酶轉錄的介紹

      1、 不需要: DNA復制需要解旋酶,可是與DNA復制相類似的轉錄過程并不需要解旋酶,基因的轉錄是由RNA聚合酶催化進行的。基因的上游具有結合RNA聚合酶的區域,叫做啟動子。啟動子是一段具有特定序列的DNA,具有和RNA聚合酶特異性結合的位點,決定了基因轉錄的起始位點。RNA聚合酶與啟動子結合后

    關于DNA解旋酶的介紹

      通常為流體蛋白環,通過ATP水解產生的能量由解旋酶裝載器裝載到DNA單鏈上(單鏈穿過環中央),有3‘--5’或5‘--3’方向極性,該極性就是它結合的單鏈的極性。它像DNA聚合酶一樣具有延伸性。  與解旋酶裝載器結合,裝載到單鏈DNA上之前,DNA解旋酶是沒有活性的,只有解旋酶裝載器將它裝載到單

    解旋酶的轉錄的相關介紹

      1、不需要: DNA復制需要解旋酶,可是與DNA復制相類似的轉錄過程并不需要解旋酶,基因的轉錄是由RNA聚合酶催化進行的。基因的上游具有結合RNA聚合酶的區域,叫做啟動子。啟動子是一段具有特定序列的DNA,具有和RNA聚合酶特異性結合的位點,決定了基因轉錄的起始位點。RNA聚合酶與啟動子結合后,

    關于DNA解旋酶的簡介

      解旋酶是一類解開氫鍵的酶,是由水解ATP供給能量來解開DNA的酶。它們常常依賴于單鏈的存在,并能識別復制叉的單鏈結構。一般在DNA或RNA復制過程中起到催化雙鏈DNA或RNA解旋的作用。  與解鏈有關的酶和蛋白質包括:1.單鏈結合蛋白2.解旋酶 3.拓撲異構酶Ⅰ 4.拓撲異構酶Ⅱ。  在細菌中類

    DNA解旋酶的簡介

      通常為流體蛋白環,通過ATP水解產生的能量由解旋酶裝載器裝載到DNA單鏈上(單鏈穿過環中央),有3‘--5’或5‘--3’方向極性,該極性就是它結合的單鏈的極性。它像DNA聚合酶一樣具有延伸性。  與解旋酶裝載器結合,裝載到單鏈DNA上之前,DNA解旋酶是沒有活性的,只有解旋酶裝載器將它裝載到單

    關于解旋酶的應用介紹

      核酸等溫擴增技術及其應用:一直以來,病原微生物的體外培養是病原體診斷的“金標準”。據微生物學家的估計,采用培養技術,僅有約1%的細菌可以培養。在過去的一個世紀里,以聚合酶鏈反應(PCR)為代表的基于核酸的檢測技術發展迅速,為其他病原體的精確檢測診斷提供了可能。毋庸置疑,Kary Mtlllis發

    什么是DNA解旋酶?

    DNA解旋酶(DNA helicase)通常為流體蛋白環,通過ATP水解產生的能量由解旋酶裝載器裝載到DNA單鏈上(單鏈穿過環中央),有3‘--5’或5‘--3’方向極性,該極性就是它結合的單鏈的極性。它像DNA聚合酶一樣具有延伸性。與解旋酶裝載器結合,裝載到單鏈DNA上之前,DNA解旋酶是沒有活性

    概述DNA解旋酶的應用

      核酸等溫擴增技術及其應用:一直以來,病原微生物的體外培養是病原體診斷的“金標準”。據微生物學家的估計,采用培養技術,僅有約1%的細菌可以培養。在過去的一個世紀里,以聚合酶鏈反應(PCR)為代表的基于核酸的檢測技術發展迅速,為其他病原體的精確檢測診斷提供了可能。毋庸置疑,Kary Mtlllis發

    關于解旋酶的基本信息介紹

      解旋酶是一類解開氫鍵的酶,是由水解ATP供給能量來解開DNA的酶。它們常常依賴于單鏈的存在,并能識別復制叉的單鏈結構。一般在DNA或RNA復制過程中起到催化雙鏈DNA或RNA解旋的作用。  與解鏈有關的酶和蛋白質包括:1.單鏈結合蛋白2.解旋酶 3.拓撲異構酶Ⅰ 4.拓撲異構酶Ⅱ。  在細菌中類

    解旋酶的應用介紹

    核酸等溫擴增技術及其應用:一直以來,病原微生物的體外培養是病原體診斷的“金標準”。據微生物學家的估計,采用培養技術,僅有約1%的細菌可以培養。在過去的一個世紀里,以聚合酶鏈反應(PCR)為代表的基于核酸的檢測技術發展迅速,為其他病原體的精確檢測診斷提供了可能。毋庸置疑,Kary Mtlllis發明的

    解旋酶打開DNA雙鏈過程破解

      美國溫安洛研究所近日發布公告稱,該所科學家和洛克菲勒大學合作,成功破解CMG解旋酶參與真核生物內DNA(脫氧核糖核酸)復制的結構過程,并首次觀察到其與DNA間的相互作用。這項發表在美國《國家科學院學報》上的最新研究,為生命繁殖之謎提供了全新注解。  溫安洛研究所教授李慧琳(音譯)從酵母生物體內提

    解旋酶打開DNA雙鏈過程破解

      美國溫安洛研究所近日發布公告稱,該所科學家和洛克菲勒大學合作,成功破解CMG解旋酶參與真核生物內DNA(脫氧核糖核酸)復制的結構過程,并首次觀察到其與DNA間的相互作用。這項發表在美國《國家科學院學報》上的最新研究,為生命繁殖之謎提供了全新注解。  溫安洛研究所教授李慧琳(音譯)從酵母生物體內提

    關于基因轉錄的轉錄因子介紹

      轉錄因子(transcription factor)是起調控作用的反式作用因子。轉錄因子是轉錄起始過程中RNA聚合酶所需的輔助因子。真核生物基因在無轉錄因子時處于不表達狀態,RNA聚合酶自身無法啟動基因轉錄,只有當轉錄因子(蛋白質)結合在其識別的DNA序列上后,基因才開始表達。轉錄因子的結合位點

    細菌解旋酶的功能介紹

    中文名稱細菌解旋酶英文名稱bacterial helicase定  義由大腸桿菌的dnaB基因編碼,是DNA復制的關鍵酶,在ATP存在下在復制叉處打開DNA雙鏈,參與引發體的形成,并刺激引發酶。在大腸桿菌細胞中有10種以上的解旋酶。應用學科生物化學與分子生物學(一級學科),酶(二級學科)

    關于體外轉錄的轉錄條件介紹

      轉錄模板必須滿足:  1. 在基因組全長克隆過程中,在正向引物5‘末端添加T7啟動子序列;  2. 以T7啟動子作為體外轉錄啟動子,在啟動子后面靶位序列連續帶有3個G,轉錄效率最 高;  3. 在正向引物5/端添加一個帽子G,有利于提高體外轉錄RNA分子的侵染活性。

    關于轉錄因子的轉錄抑制區的介紹

      也是轉錄因子調控表達的重要位點,但是對其作用機理研究尚不深入。可能的作用方式有三種:1)與啟動子的調控位點結合,阻止其它轉錄因子的結合;2)作用于其它轉錄因子,抑制其它因子的作用;3)通過改變DNA的高級結構阻止轉錄的發生。  轉錄因子必須在核內作用,才能起到調控表達的目的。因此,轉錄因子上的核

    關于轉錄的特點介紹

      轉錄時,細胞通過堿基互補的原則來生成一條帶有互補堿基的mRNA,通過它攜帶密碼子到核糖體中可以實現蛋白質的合成。與DNA的復制相比,轉錄有很多相同或相似之處,亦有其自己的特點。  轉錄中,一個基因會被讀取并復制為mRNA。就是說,以特定的DNA片段作為模板,以DNA依賴的RNA聚合酶作為催化劑,

    有解旋酶活性的相關介紹

      轉錄前先是TFⅡ-D與TATA盒結合; 繼而TFⅡ-B以其C端與TBP-DNA復合體結合,其N端則能與RNA聚合酶Ⅱ親和結合; 接著由兩個亞基組成的TFⅡ-F加入裝配,TFⅡ-F不僅能與RNA聚合酶形成復合體,還具有依賴于ATP供給能量的DNA解旋酶活性,能解開前方的DNA雙螺旋,在轉錄鏈延伸中

    可以DNA結合的酶拓撲異構酶和解旋酶

    拓撲異構酶和解旋酶: 拓撲異構酶是具有活性核酸酶和連接酶的酶。這些酶能夠改變DNA的拓撲特性。它們中的一些通過切割DNA螺旋并允許其旋轉,降低其超螺旋程度,然后通過連接酶將兩端連接。另一方面,其它拓撲異構酶能夠在連接斷裂的DNA鏈之前,切斷螺旋,并允許第二個螺旋通過斷裂部位。拓撲異構酶是許多涉及DN

    關于轉錄控制的基本介紹

      在分子生物學和遺傳學中,轉錄調節是指細胞調控DNA轉化為RNA(轉錄)的手段,從而使基因活動得到編排。  轉錄因子是一種與特定DNA序列結合的蛋白質,以調節特定基因的表達。轉錄因子的力量在于它們能夠激活或抑制下游目標基因的廣泛的序列。這些轉錄因子以一種組合方式工作的事實意味著,只有一小部分生物體

    關于轉錄酶的特點介紹

      RNA聚合酶催化RNA的合成,其與DNA聚合酶有許多相同的催化特點:  ①以DNA為模板;  ②催化核苷酸通過聚合反應合成核酸;  ③聚合反應是核苷酸形成3’,5’一磷酸二酯鍵的反應;  ④以3’→5’方向閱讀模板,5’→3’方向合成核酸;  ⑤按照堿基配對原則忠實轉錄模板序列。

    關于轉錄的調節控制介紹

      轉錄的調節控制是基因表達調節控制中的一個重要環節。促進基因轉錄叫正調節,抑制基因轉錄叫負調節。  在原核生物方面1961年F.雅各布和J.莫諾提出的操縱子學說,得到許多人的驗證和充實。操縱子通常的調控方式為:  ①誘導和阻遏作用;  ②環腺苷酸(CAMP)和降解物活化蛋白(CAP)的調節作用; 

    關于基因轉錄的過程介紹

      (1)基因轉錄— 轉錄的啟動  DNA上存在著轉錄的起始信號,它是特殊的核苷酸序列,稱為啟動子。  轉錄是由RNA聚合酶全酶結合于啟動子而被啟動的。  其機理是:s因子能識別啟動子,并識別有義鏈,它與核心酶結合,引導核心酶定位到啟動子部位。  (2)基因轉錄—?轉錄的起始  當聚合酶結合到啟動子

    關于基因轉錄的基本介紹

      基因轉錄是在細胞核和細胞質內進行的。它是指以DNA的一條鏈為模板,按照堿基互補配對原則,在RNA聚合酶作用下合成RNA的過程。基因轉錄有正調控和負調控之分。  如細菌基因的負調控機制是當一種阻遏蛋白(repressor protein)結合在受調控的基因上時,基因不表達;而從靶基因上去除阻遏蛋白

    單分子動力學研究闡釋UvrD解旋酶的工作機理

      解旋酶是一種常見的馬達蛋白,它以核酸單鏈為軌道沿著核酸鏈定向移動,并利用ATP水解提供的能量打開互補的核酸雙鏈, 獲得單鏈。解旋酶在DNA的復制、修復、重組以及轉錄等代謝過程都起著重要作用。但是人們迄今還沒有完全理解解旋酶的解旋機制。單分子操縱技術幫助人們在單分子水平定量研究解旋酶的解旋動力學,

    單分子動力學研究闡釋UvrD解旋酶的工作機理

      解旋酶是一種常見的馬達蛋白,它以核酸單鏈為軌道沿著核酸鏈定向移動,并利用ATP水解提供的能量打開互補的核酸雙鏈, 獲得單鏈。解旋酶在DNA的復制、修復、重組以及轉錄等代謝過程都起著重要作用。但是人們迄今還沒有完全理解解旋酶的解旋機制。單分子操縱技術幫助人們在單分子水平定量研究解旋酶的解旋動力學,

    單分子動力學研究闡釋UvrD解旋酶的工作機理:

    解旋酶是一種常見的馬達蛋白,它以核酸單鏈為軌道沿著核酸鏈定向移動,并利用ATP水解提供的能量打開互補的核酸雙鏈, 獲得單鏈。解旋酶在DNA的復制、修復、重組以及轉錄等代謝過程都起著重要作用。但是人們迄今還沒有完全理解解旋酶的解旋機制。單分子操縱技術幫助人們在單分子水平定量研究解旋酶的解旋動力學,是研

    單分子動力學研究闡釋UvrD解旋酶的工作機理

    解旋酶是一種常見的馬達蛋白,它以核酸單鏈為軌道沿著核酸鏈定向移動,并利用ATP水解提供的能量打開互補的核酸雙鏈, 獲得單鏈。解旋酶在DNA的復制、修復、重組以及轉錄等代謝過程都起著重要作用。但是人們迄今還沒有完全理解解旋酶的解旋機制。單分子操縱技術幫助人們在單分子水平定量研究解旋酶的解旋動力學,是研

    關于反轉錄的簡要過程介紹

      人為地提取出所需要的目的基因的信使RNA,并以之為模板人工合成DNA。  反轉錄酶的作用是以dNTP為底物,以RNA為模板,tRNA(主要是色氨酸tRNA)為引物,在tRNA3′桹H末端上,按5′→3′方向,合成一條與RNA模板互補的DNA單鏈,這條DNA單鏈叫做互補DNA(complement

    關于通用轉錄因子的成員介紹

      1、TFⅡD  該通用轉錄因子識別TATA元件(大約在轉錄起始位點上游30個堿基對處)。像很多通用轉錄因子一樣,TFⅡD實際上是一個多亞基復合體。TFⅡD中與TATA序列結合的成分稱為TBP(TATA binding protein)。此復合體中的其他亞基稱為TAF,即TBP關聯因子(TBP-a

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载