拉曼效應研究過程
拉曼1888年11月7日出生于印度南部的特里奇諾波利。父親是一位大學數學、物理教授,自幼對他進行科學啟蒙教育,培養他對音樂和樂器的愛好。他天資出眾,16歲大學畢業,以第一名獲物理學金獎。19歲又以優異成績獲碩士學位。1906年,他僅18歲,就在英國著名科學雜志《自然》發表了論文,是關于光的衍射效應的。由于生病,拉曼失去了去英國某個著名大學作博士論文的機會。獨立前的印度,如果沒有取得英國的博士學位,就沒有資格在科學文化界任職。但會計行業是唯一的例外,不需先到英國受訓。于是拉曼就投考財政部以謀求職業,結果獲得第一名,被授予總會計助理的職務。拉曼在財政部工作很出色,擔負的責任也越來越重,但他并不想沉浸在官場之中。他念念不忘自己的科學目標,把業余時間全部用于繼續研究聲學和樂器理論。加爾各答有一所學術機構,叫印度科學教育協會,里面有實驗室,拉曼就在這里開展他的聲學和光學研究。經過十年的努力,拉曼在沒有高級科研人員指導的條件下,靠自己的努力......閱讀全文
關于拉曼光譜的拉曼效應介紹
光照射到物質上發生彈性散射和非彈性散射. 彈性散射的散射光是與激發光波長相同的成分.非彈性散射的散射光有比激發光波長長的和短的成分, 統稱為拉曼效應。 當用波長比試樣粒徑小得多的單色光照射氣體、液體或透明試樣時,大部分的光會按原來的方向透射,而一小部分則按不同的角度散射開來,產生散射光。在垂直
拉曼效應的研究
拉曼1888年11月7日出生于印度南部的特里奇諾波利。父親是一位大學數學、物理教授,自幼對他進行科學啟蒙教育,培養他對音樂和樂器的愛好。他天資出眾,16歲大學畢業,以第一名獲物理學金獎。19歲又以優異成績獲碩士學位。1906年,他僅18歲,就在英國著名科學雜志《自然》發表了論文,是關于光的衍射效應的
拉曼效應的概念
拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光
什么是“拉曼效應”?
光照射到物質上發生彈性散射和非彈性散射. 彈性散射的散射光是與激發光波長相同的成分.非彈性散射的散射光有比激發光波長長的和短的成分, 統稱為拉曼效應。當用波長比試樣粒徑小得多的單色光照射氣體、液體或透明試樣時,大部分的光會按原來的方向透射,而一小部分則按不同的角度散射開來,產生散射光。在垂直方向觀察
什么是拉曼效應
喇曼效應是指往某物質中射人頻率f的單色光時,在散射光中會出現頻率f之外的f±fR, f±2fR等頻率的散射光,對此現象稱喇曼效應。由于它是物質的分子運動與格子運動之間的能量交換所產生的。當物質吸收能量時,光的振動數變小,對此散射光稱斯托克斯(stokes)線。反之,從物質得到能量,而振動數變大的散射
什么是拉曼效應?
拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光
拉曼效應的簡介
拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光
拉曼效應研究過程
拉曼1888年11月7日出生于印度南部的特里奇諾波利。父親是一位大學數學、物理教授,自幼對他進行科學啟蒙教育,培養他對音樂和樂器的愛好。他天資出眾,16歲大學畢業,以第一名獲物理學金獎。19歲又以優異成績獲碩士學位。1906年,他僅18歲,就在英國著名科學雜志《自然》發表了論文,是關于光的衍射效應的
拉曼效應的定義
拉曼效應走原于分子振動(和點陣振動)與轉動,因此從拉曼光譜中可以得到分子振動能級(點車振動能級)與轉動能級結構的知識。用的上能級概念可以說明了拉曼效應:設散射物分子原來處于基電子態,振動能級如圖所示。當受到入射光照射時,激發光與此分子的作用引起的極化可以看作為虛的吸收,表述為電子躍遷到虛態(Virt
拉曼效應的概念
拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光
什么是拉曼效應
1921年的一天,在風平浪靜的地中海上,一艘客輪正平穩地向印度駛去,一位年輕的印度母親領著一個八九歲的小男孩在光潔如鏡的甲板上散步,孩子倚在欄桿旁,望著蔚藍的大海不停地發問:“媽媽,這是什么海呀?”“這是地中海。”“為什么海水是藍色的?”“這個……媽媽也不知道。”母子的談話吸引了一位年輕的印度人,他
拉曼效應的現象規律
1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(SirChandrasekhara Venkata Raman,1888——1970年),以表彰他研究了光的散射和發現了以他的名字命名的定律。在光的散射現象中有一特殊效應,和X射線散射的康普頓效應類似,光的頻率在散射后會發生變化。“拉曼
拉曼效應有哪些應用
(1)Material checks: inorganic and organic contaminations, stress材料(2)Corrosions products: identification of different oxides腐蝕(3)Carbon: diamond -CVD
拉曼效應的現象規律
1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(SirChandrasekhara Venkata Raman,1888——1970年),以表彰他研究了光的散射和發現了以他的名字命名的定律。在光的散射現象中有一特殊效應,和X射線散射的康普頓效應類似,光的頻率在散射后會發生變化。“拉曼
拉曼效應的能級概念
能級概念圖1 上能級示意圖
激光顯微共焦拉曼光譜儀的拉曼效應
光散射是自然界常見的現象。晴朗的天空之所以呈藍色、早晚東西方的空中之所以出現紅色霞光等,都是由于光發生散射而形成了不同的景觀。拉曼光譜是一種散射光譜。在實驗室中,我們通過一個很簡單的實驗就能觀察到拉曼效應。在一暗室內,以一束綠光照射透明液體,例如戊烷,綠光看起來就像懸浮在液體上。若通過對綠光或藍
石墨烯拉曼光譜測試詳解-(四)表面增強拉曼效應
當一些分子吸附在特定的物質(如金和銀)的表面時,分子的拉曼光譜信號強度會出現明顯地增幅,我們把這種拉曼散射增強的現象稱為表面增強拉曼散射(Surface-enhanced Raman scattering,簡稱SERS)效應。SERS技術克服了傳統拉曼信號微弱的缺點,可以使拉曼強度增大幾個數
拉曼效應的定理定律
1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(SirChandrasekhara Venkata Raman,1888——1970年),以表彰他研究了光的散射和發現了以他的名字命名的定律。在光的散射現象中有一特殊效應,和X射線散射的康普頓效應類似,光的頻率在散射后會發生變化。“拉曼
拉曼效應的物理學原理
拉曼效應的機制和熒光現象不同,并不吸收激發光,因此不能用實際的上能級來解釋,波恩和黃昆用虛的上能級概念說明拉曼效應。假設散射物分子原來處于電子基態,振動能級如上圖所示。當受到入射光照射時,激發光與此分子的作用引起極化可以看作虛的吸收,表述為電子躍遷到虛態(Virtual state),虛能級上的電子
拉曼效應的物理學原理
拉曼效應的機制和熒光現象不同,并不吸收激發光,因此不能用實際的上能級來解釋,波恩和黃昆用虛的上能級概念說明拉曼效應。假設散射物分子原來處于電子基態,振動能級如上圖所示。當受到入射光照射時,激發光與此分子的作用引起極化可以看作虛的吸收,表述為電子躍遷到虛態(Virtual state),虛能級上的電子
拉曼效應的物理學原理
拉曼效應的機制和熒光現象不同,并不吸收激發光,因此不能用實際的上能級來解釋,波恩和黃昆用虛的上能級概念說明拉曼效應。假設散射物分子原來處于電子基態,振動能級如上圖所示。當受到入射光照射時,激發光與此分子的作用引起極化可以看作虛的吸收,表述為電子躍遷到虛態(Virtual state),虛能級上的電子
拉曼效應的概念和研究歷史
拉曼效應(Raman scattering),也稱拉曼散射,1928年由印度物理學家拉曼發現,指光波在被散射后頻率發生變化的現象。1930年諾貝爾物理學獎授予當時正在印度加爾各答大學工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光
拉曼效應的物理學原理
拉曼效應的機制和熒光現象不同,并不吸收激發光,因此不能用實際的上能級來解釋,波恩和黃昆用虛的上能級概念說明拉曼效應。假設散射物分子原來處于電子基態,振動能級如上圖所示。當受到入射光照射時,激發光與此分子的作用引起極化可以看作虛的吸收,表述為電子躍遷到虛態(Virtual state),虛能級上的電子
拉曼效應的物理學原理
拉曼效應的機制和熒光現象不同,并不吸收激發光,因此不能用實際的上能級來解釋,波恩和黃昆用虛的上能級概念說明拉曼效應。假設散射物分子原來處于電子基態,振動能級如上圖所示。當受到入射光照射時,激發光與此分子的作用引起極化可以看作虛的吸收,表述為電子躍遷到虛態(Virtual state),虛能級上的電子
紫外拉曼與共振拉曼原理
熒光干擾問題和靈敏度較低嚴重阻礙了常規拉曼光譜的廣泛應用。但近年來發展起來的紫外拉曼光譜技術有效地解決了上述問題。紫外拉曼光譜技術的出現和發展大大地擴展了拉曼光譜的應用范圍。右圖是紫外拉曼光譜避開熒光干擾的原理圖。熒光往往出現在300nm-700nm區域,或者更長波長區域。而在紫外區
紫外拉曼與共振拉曼原理
熒光干擾問題和靈敏度較低嚴重阻礙了常規拉曼光譜的廣泛應用。但近年來發展起來的紫外拉曼光譜技術有效地解決了上述問題。紫外拉曼光譜技術的出現和發展大大地擴展了拉曼光譜的應用范圍。右圖是紫外拉曼光譜避開熒光干擾的原理圖。熒光往往出現在300nm-700nm區域,或者更長波長區域。而在紫外區的某個波
紫外拉曼與共振拉曼原理
熒光干擾問題和靈敏度較低嚴重阻礙了常規拉曼光譜的廣泛應用。但近年來發展起來的紫外拉曼光譜技術有效地解決了上述問題。紫外拉曼光譜技術的出現和發展大大地擴展了拉曼光譜的應用范圍。右圖是紫外拉曼光譜避開熒光干擾的原理圖。熒光往往出現在300nm-700nm區域,或者更長波長區域。而在紫外區的某個波 紫外
實驗室分析儀器拉曼效應的定義
1923年德國物理學家A.Smekal首先預言了光的非彈性散射,1928年印度物理學家拉曼觀察到苯和甲苯對光的非彈性散射效應,并命名為拉曼效應。隨后以拉曼效應為基礎,建立了拉曼光譜分析法,到20世紀60年代,使用激光器作為拉曼光譜的激發光源,使拉曼光譜技術有了很大發展。但在以后的十多年間,仍未得到工
拉曼散射
1921 年,印度物理學家拉曼(C. V. Raman)從英國搭船回國,在途中他思考著為什么海洋會是藍色的問題,而開始了這方面的研究,促成他于 1928 年 2 月發現了新的散射效應,就是現在所知的拉曼效應,在物理和化學方面都很重要。?1888 年 11 月,拉曼(他的全名是 Chandrasek
拉曼分析
當一束激發光的光子與作為散射中心的分子發生相互作用時,大部分光子僅是改變了方向,發生散射,而光的頻率仍與激發光源一致,這中散射稱為瑞利散射。但也存在很微量的光子不僅改變了光的傳播方向,而且也改變了光波的頻率,這種散射稱為拉曼散射。其散射光的強度約占總散射光強度的10-6~10-10。拉曼散射的產生原