高速逆流色譜的影響因素及技術發展
影響因素 1.固定相的保留值 在逆流色譜中,留在管中固定相的量是影響溶質峰分離度的一個重要因素,高保留量將會大大改進峰分離度。 儀器對保留值的影響(外因) 研究表明:螺旋管支持件的自轉半徑r與公轉半徑R之比B值是一個影響兩相互不混溶溶劑在旋轉螺旋管內保留的關鍵因素。用大直徑的支持件使值進一步提高,能導致親水性溶劑體系的單向性流體動力學分布反向;反之,用小直徑的支持件使值減小,能使疏水性溶劑體系的單向性流體運動方向反向,而介于疏水性和親水性溶劑之間的中間極性溶劑,其兩相分布狀況則會受到離心力條件的影響。 溶劑體系物理因素對保留值的影響(內因) 溶劑體系的物理因素如溶劑的黏度對固定相的保留影響很大,低黏度的溶劑體系可望得到高的固定相保留,界面張力和兩相間的密度差會對溶劑在臨界點附近的分層時間產生較大的影響,一般為保證固定相保留值合適,溶劑體系的分層時小于30s。 2. 轉速的影響 螺旋管的旋轉速度對兩相溶劑在流體動......閱讀全文
高速逆流色譜的影響因素及技術發展
影響因素 1.固定相的保留值 在逆流色譜中,留在管中固定相的量是影響溶質峰分離度的一個重要因素,高保留量將會大大改進峰分離度。 儀器對保留值的影響(外因) 研究表明:螺旋管支持件的自轉半徑r與公轉半徑R之比B值是一個影響兩相互不混溶溶劑在旋轉螺旋管內保留的關鍵因素。用大直徑的支持件使值進一
高速逆流色譜的影響因素
1.固定相的保留值 在逆流色譜中,留在管中固定相的量是影響溶質峰分離度的一個重要因素,高保留量將會大大改進峰分離度。 儀器對保留值的影響(外因) 研究表明:螺旋管支持件的自轉半徑r與公轉半徑R之比B值是一個影響兩相互不混溶溶劑在旋轉螺旋管內保留的關鍵因素。用大直徑的支持件使值進一步提高,能導
影響高速逆流色譜的因素
影響高速逆流色譜的因素1.固定相的保留值在逆流色譜中,留在管中固定相的量是影響溶質峰分離度的一個重要因素,高保留量將會大大改進峰分離度。儀器對保留值的影響(外因) 研究表明:螺旋管支持件的自轉半徑r與公轉半徑R之比B值是一個影響兩相互不混溶溶劑在旋轉螺旋管內保留的關鍵因素。用大直徑的支持件使值進一步
高速逆流色譜技術發展
高速逆流色譜技術發展: 二十世紀六十年代,首先在日本,隨后在美國國家醫學研究院發現了一種有趣的現象:即互不相溶的兩相溶劑在繞成螺旋形的小孔徑管子里分段割據,并能實現兩溶劑相之間的逆向對流。 Ito及其后來者在此基礎上研究并設計制造出了一系列逆流色譜裝置,早期的是封閉型的螺旋管行星式離心分離儀C
高速逆流色譜的影響因素有哪些?
1、固定相的保留值 在逆流色譜中,留在管中固定相的量是影響溶質峰分離度的一個重要因素,高保留量將會大大改進峰分離度。 儀器對保留值的影響(外因) 研究表明:螺旋管支持件的自轉半徑r與公轉半徑R之比B值是一個影響兩相互不混溶溶劑在旋轉螺旋管內保留的關鍵因素。用大直徑的支持件使值進一步提高,能導
高速逆流色譜的技術發展
二十世紀六十年代,首先在日本,隨后在美國國家醫學研究院發現了一種有趣的現象:即互不相溶的兩相溶劑在繞成螺旋形的小孔徑管子里分段割據,并能實現兩溶劑相之間的逆向對流。Ito及其后來者在此基礎上研究并設計制造出了一系列逆流色譜裝置,早期的是封閉型的螺旋管行星式離心分離儀CPC(coil planet
高速逆流色譜的技術發展及研究發展
技術發展 二十世紀六十年代,首先在日本,隨后在美國國家醫學研究院發現了一種有趣的現象:即互不相溶的兩相溶劑在繞成螺旋形的小孔徑管子里分段割據,并能實現兩溶劑相之間的逆向對流。Ito及其后來者在此基礎上研究并設計制造出了一系列逆流色譜裝置,早期的是封閉型的螺旋管行星式離心分離儀CPC(coil
影響高速逆流色譜儀的使用因素
1、固定相的保留值 在逆流色譜中,留在管中固定相的量是影響溶質峰分離度的一個重要因素,高保留量將會大大改進峰分離度。 儀器對保留值的影響(外因) 研究表明:螺旋管支持件的自轉半徑r與公轉半徑R之比B值是一個影響兩相互不混溶溶劑在旋轉螺旋管內保留的關鍵因素。用大直徑的支持件使值進一步提高,能導
簡介高速逆流色譜的技術發展
1、20世紀70年代,出現了液滴逆流色譜(DCCC)特點: (1)流體靜力學原理(Hydrostatic equilibrium system,HSES) (2)分離時間過長、連接處容易出現滲漏等 2、20世紀70年代出現了離心分配色譜儀(Centrifugal partition chr
高速逆流色譜儀技術發展歷程
高速逆流色譜法是建立在單向性流體動力平衡體系之上的一種逆流色譜分離方法,它是在研究旋轉管的流體動力平衡時偶然發現的。當螺旋管在慢速轉動時,螺旋管中的兩相都從一端分布到另一端。用某一相作移動相從一端向另一端洗脫時,另一相在螺旋管里的保留值大約50%,但這一保留量會隨著移動相流速的增大而減小,使分離效率
高速逆流色譜儀的技術發展簡介
技術發展 1.[2]20世紀70年代,出現了液滴逆流色譜(DCCC)特點: (1)流體靜力學原理(Hydrostatic equilibrium system,HSES) (2)分離時間過長、連接處容易出現滲漏等 2.20世紀70年代出現了離心分配色譜儀(Centrif
關于高速逆流色譜的高速逆流色譜的概述
高速逆流色譜儀(High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術。 高速逆流色譜 ( high-speed countercurrent chromatog
高速逆流色譜
高速逆流色譜(High-speed Countercurrent Chromatography,簡稱HSCCC)是由美國國家醫學院Yiochiro Ito博士于1982年首先開始的。到目前為止,此項技術已用于生物化學、生物工程、醫學、藥學、天然產物化學、有機合成、化工、環境、農業、 食品、材
逆流色譜法實驗操作及影響因素
實驗操作 在進行分離純化時,首先將固定相充滿于色譜柱,而后色譜柱即圍繞自身軸進行自轉;同時圍繞設備中心軸進行高速公轉(即行星式運動),再將流動相泵入色譜柱。在此之前,首先選擇預先平衡好的兩相溶劑中的一相為固定相,并將其充滿螺旋管柱,然后使螺旋管柱在一定的轉速下高速旋轉,同時以一定的流速將流動相
逆流色譜法的影響因素
由于高速逆流色譜是無需任何固態載體支撐的液-液色譜,其中作為固定相的液體在色譜柱中的保留程度對于高速逆流色譜的分離過程是十分重要。首先,所選擇的溶劑體系對固定相保留率有很大的影響,如兩相密度差、粘度、界面張力等。兩相的密度差對固定相保留率的影響最大,固定相保留率和密度差基本呈線性關系。其次,還存
高速逆流色譜的構造及特點
構造 儀器的中心部分:(a) ITO多層線圈分離柱,它是由100-200米長、內徑為1.6mm左右的聚四氟乙烯管沿具有適當內徑的內軸共繞十多層而成,其管內總體積可達300mL左右。(b)平衡器,它可以調節重量,它的作用是讓(a), (b)相對于中心軸兩邊重量平衡。當在旋轉控制器的控制下,在齒輪
高速逆流色譜構造
高速逆流色譜構造:儀器的中心部分:(a) ITO多層線圈分離柱,它是由100-200米長、內徑為1.6mm左右的聚四氟乙烯管沿具有適當內徑的內軸共繞十多層而成,其管內總體積可達300mL左右。(b)平衡器,它可以調節重量,它的作用是讓(a), (b)相對于中心軸兩邊重量平衡。當在旋轉控制器的控制下,
高速逆流色譜原理
1. 逆流色譜是20世紀50年代源于多極萃取技術(非連續性)多極萃取技術但是多極萃取設備龐大復雜、易碎、溶劑體系容易乳化,溶劑耗量大,分離時間長。2. 通過公轉、自轉(同步行星式運動)產生的二維力場,保留兩相中的其中一相作為固定相高速逆流色譜原理2.通過高速旋轉提高兩相溶劑的萃取頻率,1000rpm
高速逆流色譜的特點
應用范圍廣,適應性好 由于溶劑系統的組成及配比可以是無限多的,因而從理論上講可以適用于任何極性范圍內樣品的分離,在分離天然化合物方面具有其獨到之處。由于聚四氟乙烯管中的固定相為液體不需要固相載體,因而可以消除固-液色譜中由于使用固相載體而帶來的吸附損失,特別適用于分離極性物質。 操作簡便,容
高速逆流色譜的特點
高速逆流色譜的特點應用范圍廣,適應性好由于溶劑系統的組成及配比可以是無限多的,因而從理論上講可以適用于任何極性范圍內樣品的分離,在分離天然化合物方面具有其獨到之處。由于聚四氟乙烯管中的固定相為液體不需要固相載體,因而可以消除固-液色譜中由于使用固相載體而帶來的吸附損失,特別適用于分離極性物質。操作簡
高速逆流色譜的構造
儀器的中心部分:(a) ITO多層線圈分離柱,它是由100-200米長、內徑為1.6mm左右的聚四氟乙烯管沿具有適當內徑的內軸共繞十多層而成,其管內總體積可達300mL左右。(b)平衡器,它可以調節重量,它的作用是讓(a), (b)相對于中心軸兩邊重量平衡。當在旋轉控制器的控制下,在齒輪傳動裝置
影響逆流色譜法的因素有哪些?
由于高速逆流色譜是無需任何固態載體支撐的液-液色譜,其中作為固定相的液體在色譜柱中的保留程度對于高速逆流色譜的分離過程是十分重要。首先,所選擇的溶劑體系對固定相保留率有很大的影響,如兩相密度差、粘度、界面張力等。兩相的密度差對固定相保留率的影響最大,固定相保留率和密度差基本呈線性關系。其次,還存
高速逆流色譜儀原理及優點
高速逆流色譜儀原理及優點高速逆流色譜法 (High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術,與其它色譜技術不同的是它不需任何固態載體,因此能避免固相載體表面與樣品
高速逆流色譜儀原理及優點
高速逆流色譜法 (High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術,與其它色譜技術不同的是它不需任何固態載體,因此能避免固相載體表面與樣品發生反應而導致樣品的
高速逆流色譜儀原理及優點
高速逆流色譜法 (High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續的液液分配色譜技術,與其它色譜技術不同的是它不需任何固態載體,因此能避免固相載體表面與樣品發生反應而導致樣品的污染、失
高速逆流色譜研究發展
高速逆流色譜研究發展:溶劑體系的選擇范圍越來越寬泛,有人提出用超臨界二氧化碳做流動相,利用它的高擴散性、低粘度、流體特性及環境友好等其他溶劑不可比擬的優勢分離化合物,還有人提出用制冷劑做流動相的可能性。還有人提出將三相溶劑體系用于高速逆流色譜分離中,可以對寬極性范圍的樣品進行很好的分離。三相溶劑還只
高速逆流色譜技術簡介
高速逆流色譜儀(High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術。高速逆流色譜(high speed countercurrentchromatography,簡
高速逆流色譜技術簡述
高速逆流色譜儀(High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術。高速逆流色譜 ( high-speed countercurrent chromatograph
高速逆流色譜技術簡述
高速逆流色譜技術簡述高速逆流色譜儀(High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術。高速逆流色譜 ( high-speed countercurrent chr
高速逆流色譜經驗分享
高速逆流色譜屬于逆流色譜的范疇,逆流色譜是新型的分離手段,它的主要分離原理是利用樣品在固定相和流動相之間的差異也就是分配比不同而進行分離的,值得注意的是逆流色譜的固定相和流動相都是液體,其主要優點是沒有傳統色譜的死吸附,樣品的回收率高等特點。逆流色譜源于逆流分溶法,也就是用實驗室經常使用的分液漏斗進