• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 原位合成芯片的制備方法介紹

    方法一Affymetrix公司將光平版印刷技術(photolithographicapproach)運用到DNA合成化學中,利用固相化學、光敏保護基及光刻技術得到位置確定、高度多樣性的化合物集合。該法利用光敏保護基來保護堿基單位的5’羥基。第一步利用光照射使固體表面上的羥基脫保護,然后固體表面與光敏保護基保護、亞磷酰胺活化的堿基單體接觸,合成只在那些脫保護基的地方進行。光照區域就是要合成的區域,該過程通過一系列掩膜來控制。如此循環以合成寡核苷酸,直到設定的寡核苷酸長度。每個寡核苷酸片段代表了一種特定的基因存在于DNA芯片的特定位置上,可合成任意序列15—25個堿基長度的片段。這種方法可使每cm2上的探針數量達到106個,每種探針為5~10btm的方形區域,探針的間距約為20btm。這種方法的最大的優點就是可以在較小的區域內制造大量不同的探針,如1cm2可以有400 000種探針。后來由于運用了非線性半導體光抗技術(non—lin......閱讀全文

    原位合成芯片的制備方法介紹

    方法一Affymetrix公司將光平版印刷技術(photolithographicapproach)運用到DNA合成化學中,利用固相化學、光敏保護基及光刻技術得到位置確定、高度多樣性的化合物集合。該法利用光敏保護基來保護堿基單位的5’羥基。第一步利用光照射使固體表面上的羥基脫保護,然后固體表面與光敏

    原位合成的基因芯片制備技術

    生物芯片制備中材料的固定方式主要包括原位合成法和點樣法兩種,點樣法又分為接觸式點樣法和非接觸式點樣法。原位合成法主要用于基因芯片的制備,點樣法可用于基因芯片和蛋白質芯片的制備。細胞芯片主要是通過細胞本身的貼壁生長來完成固定。組織芯片通過一些黏性溶劑(如石蠟)使組織切片固定在載體上。某些微流體芯片不需

    原位合成應用于生物芯片制備

    在生物基因工程領域,生物芯片制備中材料的固定方式主要包括原位合成法和點樣法兩種,點樣法又分為接觸式點樣法和非接觸式點樣法。原位合成法主要用于基因芯片的制備,點樣法可用于基因芯片和蛋白質芯片的制備。細胞芯片主要是通過細胞本身的貼壁生長來完成固定。組織芯片通過一些黏性溶劑(如石蠟)使組織切片固定在載體上

    原位合成芯片的概念

    原位合成芯片是指將多個寡核苷酸片段用單核苷酸底物直接合成到載體的特定位置上制備的芯片。

    生物芯片技術的原位合成

      光引導原位合成  原位合成適于制造寡核苷酸和寡肽微點陣芯片,具有合成速度快、相對成本低、便于規模化生產等優點。照相平板印刷技術是平板印刷技術與DNA和多肽固相化學合成技術相結合的產物,可以在預設位點按照預定的序列方便快捷地合成大量寡核苷酸或多肽分子。在生物芯片研制方面享有盛譽的美國Affymet

    生物芯片的芯片制備方法

    包括原位合成和預合成后點樣。原位合成:適用于寡核苷酸,通過光引導蝕刻技術。已有P53、P450,BRCAI/BRCA2 等基因突變的基因芯片。預合成后點樣:是將提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因組DAN等通過特定的高速點樣機器人直接點在芯片上。該技術優點在于相對簡易低廉,被國內外廣泛

    生物芯片的芯片制備方法

    包括原位合成和預合成后點樣。原位合成:適用于寡核苷酸,通過光引導蝕刻技術。已有P53、P450,BRCAI/BRCA2 等基因突變的基因芯片。預合成后點樣:是將提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因組DAN等通過特定的高速點樣機器人直接點在芯片上。該技術優點在于相對簡易低廉,被國內外廣泛

    原位芯片的應用

    ? ? 原位芯片作為基礎材料,它就像一個支點,可撬動多領域的應用,且與我們生活息息相關。比如,在原位芯片的“助攻”下,電子顯微鏡觀測能力將大幅度提高,能全程高清拍攝每個原子的變化和運動軌跡,借由這項技術,可以研究汽車尾氣、廢水等。由于原位芯片高通量、少樣本量的特性,可滿足超快速體外診斷(如用尿液檢測

    原位合成應用于復合材料制備

    傳統復合材料制備方法有粉末冶金法、噴射成型法和各種鑄造技術即模壓鑄造、流變鑄造和混砂鑄造等。所有這些方法是將事先制備好的增強相加入處于熔融狀態或粉末狀態的基體材料中,于是傳統的增強相被稱為外加的。外加法制備的復合材料存在增強體顆粒尺寸粗大、熱力學不穩定、界面結合強度低等缺點。為了克服這些缺點,近年來

    生物芯片技術的芯片制備方法

    包括原位合成和預合成后點樣。原位合成:適用于寡核苷酸,通過光引導蝕刻技術。已有P53、P450,BRCAI/BRCA2 等基因突變的基因芯片。預合成后點樣:是將提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因組DAN等通過特定的高速點樣機器人直接點在芯片上。該技術優點在于相對簡易低廉,被國內外廣泛

    生物芯片中芯片制備方法

    包括原位合成和預合成后點樣。原位合成:適用于寡核苷酸,通過光引導蝕刻技術。已有P53、P450,BRCAI/BRCA2 等基因突變的基因芯片。預合成后點樣:是將提取或合成好的多肽、蛋白、寡核苷酸、cDNA、基因組DAN等通過特定的高速點樣機器人直接點在芯片上。該技術優點在于相對簡易低廉,被國內外廣泛

    關于合成樹脂的制備方法介紹

      合成樹脂為高分子化合物,是由低分子原料――單體(如乙烯、丙烯、氯乙烯等)通過聚合反應結合成大分子而生產的。工業上常用的聚合方法有本體聚合、懸浮聚合、乳液聚合、溶液聚合、淤漿聚合、氣相聚合等。生產合成樹脂的原料來源豐富,早期以煤焦油產品和電石碳化鈣為主,現多以石油和天然氣的產品為主,如乙烯、丙烯、

    氨基酸合成的制備方法介紹

      組成蛋白質的大部分氨基酸是以埃姆登-邁耶霍夫(Embden-Meyerhof)途徑與檸檬酸循環的中間物為碳鏈骨架生物合成的。例外的是芳香族氨基酸、組氨酸,前者的生物合成與磷酸戊糖的中間物赤蘚糖-4-磷酸有關,后者是由ATP與磷酸核糖焦磷酸合成的。微生物和植物能在體內合成所有的氨基酸,動物有一部分

    原位合成的概念和應用介紹

    原位合成是一種制作基因芯片的方法,是原來用于電子芯片制作的光刻法轉為核酸序列的合成技術。利用光罩控制反應位置,將核苷酸分子依序列一個一個接上去;可大量生產超高密度的芯片。由于制程與光罩成本等因素,這種方法做出的探針長度約在25-mer以下;因此同一個基因需要多個探針對應,以避免誤判。

    生物芯片的制備方法

    載體材料及要求作為載體必須是固體片狀或者膜、表面帶有活性基因,以便于連接并有效固定各種生物分子。目前制備芯片的固相材料有玻片、硅片、金屬片、尼龍膜等。目前較為常用的支持材料是玻片,因為玻片適合多種合成方法,而且在制備芯片前對玻片的預處理也相對簡單易行。載體種類玻璃片、PVDF膜、聚丙烯酰氨凝膠、聚苯

    生物芯片的制備方法

    載體材料及要求作為載體必須是固體片狀或者膜、表面帶有活性基因,以便于連接并有效固定各種生物分子。目前制備芯片的固相材料有玻片、硅片、金屬片、尼龍膜等。目前較為常用的支持材料是玻片,因為玻片適合多種合成方法,而且在制備芯片前對玻片的預處理也相對簡單易行。載體種類玻璃片、PVDF膜、聚丙烯酰氨凝膠、聚苯

    基因芯片的制備方法

    基因芯片的片基主要有硅片、玻璃片、硝酸纖維膜、聚丙烯膜等寡核苷酸芯片以人工合成的寡核苷酸片斷作為探針,制備方法主要有原位合成法和合成后點樣法。而 cDNA 芯片以長片斷的 PCR 產物作為探針,制備方法主要為合成后點樣法。(1)原位合成法? 制備寡核苷酸芯片原位合成法設備昂貴,技術復雜。(2)合成后

    溴酚藍的合成制備方法

    1.將苯酚紅溶于冰乙酸,攪拌下加入溴溶于冰乙酸的溶液,攪拌幾分鐘后傾入60℃熱水中,冷卻至室溫,放置過夜。過濾,依次用冰乙酸、苯洗滌濾餅,晾干,得溴酚藍。2.將酚紅溶于冰乙酸中,加熱至沸,滴加溴溶于冰乙酸中的溶液,黃色固體析出時,過濾,用乙酸洗去游離溴,置于空氣中干燥后即得粗品。用冰乙酸或丙酮與冰乙

    關于合成法制備乙醇的方法介紹

      隨著近代有機工業的發展,可利用煉焦油、石油裂解所得的乙烯來合成乙醇。該法中的原料乙烯,可大量取自石油裂解氣,成本低,產量大,并且能大量節約糧食。化學合成法有直接水合法和間接水合法兩種,工業上普遍采用前者。?  ⑴直接水合法:乙烯與水蒸氣在有機磷催化劑存在的條件下,經高溫高壓作用,可直接發生加成反

    半合成青霉素的制備方法介紹

      以6APA為中間體與多種化學合成有機酸進行酰化反應,可制得各種類型的半合成青霉素。  6APA是利用微生物產生的青霉素酰化酶裂解青霉素G或V而得到。酶反應一般在40~50℃、pH8~10的條件下進行;酶固相化技術已應用于6APA生產,簡化了裂解工藝過程。6APA也可從青霉素G用化學法來裂解制得,

    合成法制備左旋肉堿的方法介紹

      最早于1953年就有DL-肉堿合成的ZL報道,20世紀60年代已有工業化生產。國內1982年也有作為胃藥的生產和應用。直接從DL-肉堿出發,用樟腦酸、N-乙酰-D-谷氨酸或乙苯酰-L-(+)酒石酸為拆分劑,進行化學拆分獲取L-肉堿。但D-肉堿消旋比較困難,不能回收,工業化生產尚需突破性進展。已經

    原位合成的應用范圍

    復合材料制備傳統復合材料制備方法有粉末冶金法、噴射成型法和各種鑄造技術即模壓鑄造、流變鑄造和混砂鑄造等。所有這些方法是將事先制備好的增強相加入處于熔融狀態或粉末狀態的基體材料中,于是傳統的增強相被稱為外加的。外加法制備的復合材料存在增強體顆粒尺寸粗大、熱力學不穩定、界面結合強度低等缺點。為了克服這些

    生物芯片生物樣本的制備方法

    分離純化、壙增、獲取其中的蛋白質或DNA、RNA并用熒光標記, 才能與芯片進行反應。用DNA芯片做表達譜研究時,通常是將樣品先抽提MRNA,然后反轉錄成CDNA。同時摻入帶熒光標記的dCTP或dUTP。

    組織芯片的制備——冰凍組織芯片

    實驗材料新鮮組織試劑、試劑盒OCT 包埋劑切片黏合劑儀器、耗材1 mm 孔徑針載玻片實驗步驟將每個需要制備 TMA 的新鮮組織,不經固定包埋在 OCT 包埋劑中, -20℃ 中凍成塊。另外,再將 OCT 包埋劑倒在長 3 cm×寬 1.5 cm×高 lcm 的模具中, -20℃ 中凍成塊。用特制的

    簡述微流控芯片制備方法

    實驗室制備微流控芯片需要采用電子計算機輔助軟件設計出簡易型或者復雜型的微流控芯片圖紙,應用激光雕刻技術在由聚二甲基硅氧烷、聚吡咯烷酮、線性聚丙烯酰胺、聚二甲基丙烯酰胺、羥乙基纖維素、聚甲基丙烯酸甲酯、聚碳酯等混合材料制備的雙面黏性薄膜上切割出微米級、納米級的微流控芯片流體通道,將由聚二甲基硅氧烷制備

    組織芯片的制備

    實驗方法原理 首先制作模具蠟塊(受體,recipient)。從供體蠟塊(donor)上取樣,取樣針分別有 0.6 mm、1.0 mm、1.5 mm 和 2.0 mm 幾種,在 1 個大小 45 mm×20 mm 的模具蠟塊上,以 0.6 mm 取樣針間隔 0.1 mm,可排列 1000 余個

    蛋白芯片技術的探針的制備方法

    低密度蛋白質芯片的探針包括特定的抗原、抗體、酶、吸水或疏水物質、結合某些陽離子或陰離子的化學集團、受體和免疫復合物等具有生物活性的蛋白質。制備時常常采用直接點樣法,以避免蛋白質的空間結構改變。保持它和樣品的特異性結合能力。高密度蛋白質芯片一般為基因表達產物,如一個cDNA文庫所產生的幾乎所有蛋白質均

    羊水細胞染色體制備方法(原位法)

    細胞培養1. 將羊水(約20ml)轉移到無菌的離心管中,1000rpm離心10分鐘;2. 去除上清液,用于其它分析,保留細胞懸液約0.5~1ml,用培養基混勻到2~2.5ml左右;3. 將細胞懸液平分到3只Chromslide培養皿中;4. 培養24/48小時后,向每只Chromslide培養皿中加

    組織芯片的制備——石蠟塊組織芯片

    實驗方法原理首先制作模具蠟塊(受體,recipient)。從供體蠟塊(donor)上取樣,取樣針分別有 0.6 mm、1.0 mm、1.5 mm 和 2.0 mm 幾種,在 1 個大小 45 mm×20 mm 的模具蠟塊上,以 0.6 mm 取樣針間隔 0.1 mm,可排列 1000 余個位點,如取

    蛋白質芯片技術探針的制備方法

    低密度蛋白質芯片的探針包括特定的抗原、抗體、酶、吸水或疏水物質、結合某些陽離子或陰離子的化學集團、受體和免疫復合物等具有生物活性的蛋白質。制備時常常采用直接點樣法,以避免蛋白質的空間結構改變。保持它和樣品的特異性結合能力。高密度蛋白質芯片一般為基因表達產物,如一個cDNA文庫所產生的幾乎所有蛋白質均

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载