X射線衍射的原理
當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分布的方位和強度,與晶體結構密切相關。這就是X射線衍射的基本原理。布拉格方程1913年英國物理學家布拉格父子(W.H.Bragg,W.L.Bragg)在勞厄發現的基礎,不僅成功地測定了NaCl、KCl等的晶體結構,并提出了作為晶體衍射基礎的著名公式──布拉格方程:2dsinθ=nλ式中d為晶面間距;n為反射級數;θ為掠射角;λ為X射線的波長。布拉格方程是X射線衍射分析的根本依據。運動學衍射理論Darwin的理論稱為X射線衍射運動學理論。該理論把衍射現象作為三維Frannhofer衍射問題來處理,認為晶體的每個體積元的散射與其它體積元的散射無關,而且散射線通過晶體時不會再被散射。雖然這樣處理可以得出足夠精確的衍射方向,也能得出衍射強......閱讀全文
X射線衍射的原理
當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分布的方位和強度,與晶體結構密切相關。這就是X射線衍射的基本原理。布拉格方程1913年英國物理學家
X射線衍射的原理
當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分布的方位和強度,與晶體結構密切相關。這就是X射線衍射的基本原理。
X射線衍射儀原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以上是1912年德國物
x射線衍射儀的原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以上是1912年德
x射線衍射法的原理
原理:將具有一定波長的X射線照射到結晶性物質上時,X射線因在結晶內遇到規則排列的原子或離子而發生散射,散射的X射線在某些方向上相位得到加強,從而顯示與結晶結構相對應的特有的衍射現象。波長λ可用已知的X射線衍射角測定,進而求得面間隔,即結晶內原子或離子的規則排列狀態。將求出的衍射X射線強度和面間隔與已
x射線衍射儀的原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以上是1912年德
多晶X射線衍射的原理
多晶衍射儀法的原理與照相法類似,只是用射線記數器記錄衍射線的位置和強度,加上與電子計算機聯用,可使測量的準確度高、分辨能力強且迅速方便,并能自動將樣品的數據與計算機貯存的標準數據對照而鑒定樣品的物相。
多晶X射線衍射的原理
多晶衍射儀法的原理與照相法類似,只是用射線記數器記錄衍射線的位置和強度,加上與電子計算機聯用,可使測量的準確度高、分辨能力強且迅速方便,并能自動將樣品的數據與計算機貯存的標準數據對照而鑒定樣品的物相。
多晶x射線衍射的原理
多晶衍射儀法的原理與照相法類似,只是用射線記數器記錄衍射線的位置和強度,加上與電子計算機聯用,可使測量的準確度高、分辨能力強且迅速方便,并能自動將樣品的數據與計算機貯存的標準數據對照而鑒定樣品的物相。
x射線衍射法的原理
原理:將具有一定波長的X射線照射到結晶性物質上時,X射線因在結晶內遇到規則排列的原子或離子而發生散射,散射的X射線在某些方向上相位得到加強,從而顯示與結晶結構相對應的特有的衍射現象。波長λ可用已知的X射線衍射角測定,進而求得面間隔,即結晶內原子或離子的規則排列狀態。將求出的衍射X射線強度和面間隔與已
x射線衍射法的原理
原理:將具有一定波長的X射線照射到結晶性物質上時,X射線因在結晶內遇到規則排列的原子或離子而發生散射,散射的X射線在某些方向上相位得到加強,從而顯示與結晶結構相對應的特有的衍射現象。波長λ可用已知的X射線衍射角測定,進而求得面間隔,即結晶內原子或離子的規則排列狀態。將求出的衍射X射線強度和面間隔與已
X射線衍射的工作原理
當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分布的方位和強度,與晶體結構密切相關。這就是X射線衍射的基本原理。 布拉格方程 1913年
X射線衍射儀的原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以上是1912年德國物
x射線衍射法的原理
原理:將具有一定波長的X射線照射到結晶性物質上時,X射線因在結晶內遇到規則排列的原子或離子而發生散射,散射的X射線在某些方向上相位得到加強,從而顯示與結晶結構相對應的特有的衍射現象。波長λ可用已知的X射線衍射角測定,進而求得面間隔,即結晶內原子或離子的規則排列狀態。將求出的衍射X射線強度和面間隔與已
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀工作原理
X射線衍射儀工作原理x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以
X射線衍射儀工作原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。對于晶體材料,當待測晶體與入射束呈不同角度時,那些滿足布拉格衍射的晶面就會被檢測出來,體現在XRD圖譜上就是具有不同的
X射線衍射儀的的原理
X射線衍射儀是一種常用的檢測儀器,利用波長很短的電磁波能穿透一定厚度的物質,并能使熒光物質發光、照相機乳膠感光、氣體電離。X射線衍射儀的原理是什么用戶都了解嗎?下面小編就來具體介紹一下,希望可以幫助到大家。 X射線衍射儀的原理 x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為
X射線衍射分析的原理簡介
X射線衍射分析是利用晶體形成的X射線衍射,對物質進行內部原子在空間分布狀況的結構分析方法。將具有一定 波長的X 射線照射到結晶性物質上時,X射線因在結晶內遇到規則排列的原子或離子而發生散射,散射的X射線在某些方向上相位得到加強,從而顯示與結晶結構相對應的特有的衍射現象。衍射X 射線滿足 布拉格(
x射線衍射儀的原理簡介
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以上是1912年德
簡述X射線衍射儀的原理
x射線的波長和晶體內部原子面之間的間距相近,晶體可以作為X射線的空間衍射光柵,即一束X射線照射到物體上時,受到物體中原子的散射,每個原子都產生散射波,這些波互相干涉,結果就產生衍射。衍射波疊加的結果使射線的強度在某些方向上加強,在其他方向上減弱。分析衍射結果,便可獲得晶體結構。以上是1912年德