武漢物數所金屬改性沸石分子篩協同活性中心研究獲進展
近日,中國科學院武漢物理與數學研究所固體核磁共振與多相催化研究組在金屬改性沸石分子篩協同活性中心研究方面取得新進展。 沸石分子篩在工業中,廣泛用于各種重要多相催化過程。通過金屬元素改性可使分子篩催化劑產生多功能性,沸石分子篩在諸多催化反應中表現出優異的催化活性與選擇性。這種優異的催化性能一般被歸結為分子篩上B酸位(酸性質子)與金屬活性位點(Lewis酸)之間協同催化作用的結果。盡管大量的催化反應實驗表明,相互空間鄰近的酸性質子與金屬物種是產生協同作用的關鍵,但是由于缺乏有效的實驗表征手段,這一類重要的協同活性位一直未能被直接觀測和證實,限制了對此類催化劑的認識及相關催化過程的了解。 芳烴是一種重要的大宗化學品與有機化工基礎原料,Ga金屬改性的ZSM-5沸石分子篩通常用于甲醇轉化制備芳烴(MTA)的反應。在這項研究中,研究組采用固體NMR技術對Ga/ZSM-5分子篩催化劑上的協同活性中心進行了深入研究。研究者利用所發展的靈......閱讀全文
武漢物數所金屬改性沸石分子篩協同活性中心研究獲進展
近日,中國科學院武漢物理與數學研究所固體核磁共振與多相催化研究組在金屬改性沸石分子篩協同活性中心研究方面取得新進展。 沸石分子篩在工業中,廣泛用于各種重要多相催化過程。通過金屬元素改性可使分子篩催化劑產生多功能性,沸石分子篩在諸多催化反應中表現出優異的催化活性與選擇性。這種優異的催化性能一般被
沸石分子篩催化劑的固體核磁共振(NMR)研究專題論文
近日,應美國化學會綜述性學術期刊Accounts of Chemical Research 的邀請,中國科學院武漢物理與數學研究所研究員徐君和鄧風撰寫了題為Metal active sites and their catalytic functions in zeolites: insights
武漢物數所在金屬負載沸石分子篩活性中心研究取得進展
近日,中國科學院武漢物理與數學研究所固體核磁共振與多相催化研究組研究員鄧風和徐君團隊與浙江大學教授肖豐收課題組合作,在金屬負載沸石分子篩活性中心研究方面取得新進展,首次利用固體核磁共振的高效1H檢測技術實現了對錫負載Beta沸石分子篩中活性錫物種的直接觀測,揭示了不同錫物種間的可逆轉化過程。相關
武漢物數所沸石分子篩活性中心的協同效應研究獲進展
中國科學院武漢物理與數學研究所鄧風研究組在沸石分子篩催化劑活性中心協同效應的固體核磁共振研究方面取得新進展,相關研究結果在《德國應用化學》(Angew. Chem. Int. Ed.)上在線發表。 為了提高多相催化劑(如沸石分子篩、氧化物等)的催化反應性能,往往需要在催化劑上構建多種活性中心。
我所發展定向調控分子篩骨架鋁落位的新策略
近日,我所低碳催化與工程研究部(DNL12)劉中民院士團隊以典型的絲光沸石分子篩作為研究對象,通過設計一種低分壓四氯化硅處理(LPST)的策略,實現了鋁原子選擇性地富集在絲光沸石骨架的T3位點上(位于8元環孔道)。利用該策略改性后的催化劑展現出優異的二甲醚羰基化反應性能。 催化研究一直追求更高
大化所發展定向調控分子篩骨架鋁落位的新策略
近日,我所低碳催化與工程研究部(DNL12)劉中民院士團隊以典型的絲光沸石分子篩作為研究對象,通過設計一種低分壓四氯化硅處理(LPST)的策略,實現了鋁原子選擇性地富集在絲光沸石骨架的T3位點上(位于8元環孔道)。利用該策略改性后的催化劑展現出優異的二甲醚羰基化反應性能。 催化研究一直追求更高效
Y沸石分子篩脫鋁機理研究獲新進展
中國科學院武漢物理與數學所波譜與原子分子物理國家重點實驗室的鄧風研究組在Y沸石分子篩脫鋁修飾機理的研究方面取得重要進展,相關研究結果于10月7日在《德國應用化學》 (Angew. Chem. Int. Ed.)在線發表。 Y沸石分子篩是石油化工生產中應用得最廣泛的分子篩催化劑之
概述沸石分子篩的結構
沸石分子篩材料的廣泛應用(例如:吸附分離、離子交換、催化),是與其結構特點密不可分的。例如,吸附分離性能取決于分子篩的孔道和孔體積的大小;離子交換性能取決于分子篩中陽離子的數目、位置及其孔道的可通行性;催化過程中表現出的擇形性與分子篩的孔道尺寸、走向相關,而催化反應中的中間產物以及最后產品和分子
概述沸石分子篩的展望
近年來,沸石分子篩由于具有獨特的性能,已經在吸附分離、催化等領域取得了廣泛的應用。但是對某些沸石分子篩的性能優劣問題認識不夠深入,有的甚至還很膚淺,為了更加有效地發揮沸石分子篩在吸附分離、催化領域應用的優勢,要注意以下幾個方面的工作: 1)研制價格低廉的沸石分子篩,以降低生產成本為目的; 2
沸石分子篩的結構特點
結構單元首先從最簡單的基本結構單元進行研究。通常來講,沸石分子篩都是一個個四面體通過共用頂點來堆積得到的,所以一個四面體就是一個初級的結構單元(TO4四面體)。例如:對于silicalite-1沸石分子篩來講,它的初級結構單元是硅氧四面體([Si O4]0),并且這個四面體結構單元呈現電中性,這些硅
大連化物所等實現乙烷非氧化脫氫制乙烯機理的模型統一
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室理論催化創新特區研究組研究員肖建平團隊與浙江大學教授肖豐收、研究員王亮團隊合作,在乙烷非氧化脫氫制乙烯研究中取得新進展。 乙烯和丙烯等低碳烯烴是現代化學工業的重要原料。通過低碳烷烴脫氫,有望實現頁巖氣直接生產低碳烯烴,具有重要的研究價值。
大連化物所實現乙烷非氧化脫氫制乙烯機理的模型統一
近日,我所催化基礎國家重點實驗室理論催化創新特區研究組(05T8組)肖建平研究員團隊與浙江大學肖豐收教授、王亮研究員團隊合作,在乙烷非氧化脫氫制乙烯的研究中取得新進展。 乙烯和丙稀等低碳烯烴是現代化學工業的重要原料。通過低碳烷烴脫氫,有望實現頁巖氣直接生產低碳烯烴,具有重要的研究價值。金屬鐵(
分子篩的主要結構特點介紹
自然界中存在一種天然硅鋁酸鹽,它們具有篩分分子、吸附、離子交換和催化作用。這種天然物質稱為沸石,人工合成的沸石也稱為分子篩。分子篩的化學組成通式為:(M)2/nO· Al2O3·xSiO2·pH2O,M代表金屬離子(人工合成時通常為Na),n代表金屬離子價數, x代表SiO2的摩爾數,也稱為硅鋁比,
關于沸石分子篩的性能介紹
吸附性能沸石分子篩的吸附是一種物理變化過程。產生吸附的原因主要是分子引力作用在固體表面產生的一種“表面力”,當流體流過時,流體中的一些分子由于做不規則運動而碰撞到吸附劑表面,在表面產生分子濃聚,使流體中的這種分子數目減少,達到分離、清除的目的。由于吸附不發生化學變化,只要設法將濃聚在表面的分子趕跑,
沸石分子篩材料的應用特點
沸石分子篩廣泛應用(例如:吸附分離、離子交換、催化),是與其結構特點密不可分的。例如,吸附分離性能取決于分子篩的孔道和孔體積的大小;離子交換性能取決于分子篩中陽離子的數目、位置及其孔道的可通行性;催化過程中表現出的擇形性與分子篩的孔道尺寸、走向相關,而催化反應中的中間產物以及最后產品和分子篩的孔道維
沸石分子篩的主要應用介紹
干燥及凈化領域的應用(1)脫水。利用低硅鋁比的沸石分子篩(如 A型,X型等)的極性親水性,可以進行空氣的干燥。另外近年來將乙醇摻入汽油中替代部分汽油受到廣泛重視,作為燃料的乙醇要求其中的水含量低于 0.8%,而由于乙醇和水的共沸,使得通過精餾只能得到 95%的乙醇,對于含水量較低的乙醇脫水,沸石分子
沸石分子篩合成的影響因素
水熱合成法是在沸石分子篩合成中最常用和最有效的途徑,深入研究分子篩水熱合成的主要困難是對分子篩的生成機理了解的還不夠清楚。但是,對于沸石分子篩的合成來說無論哪種生成機理,其晶化過程都要經歷相同的基本步驟:多硅酸鹽與鋁酸鹽的再聚合、分子篩成核、核生長、分子篩晶體的生長以及引起的二次成核。為了很好的控制
精密測量院在沸石分子篩活性調控研究方面取得新進展
近日,中國科學院精密測量科學與技術創新研究院研究員鄭安民團隊在沸石分子篩的活性位點分布特性的原位環境理論預測方面取得進展。 沸石分子篩是現代化工業生產中最為重要的一類催化劑,廣泛應用于石油化工領域。分子篩的催化反應特性與活性位的分布密切相關,調控活性位在分子篩不同骨架結構上的分布會極大地影響分
金屬催化劑分別有哪幾種類型
在化學反應中只能用二氧化猛催化劑嗎?不一定催化劑是有選擇性的催化劑有兩種機理:1,催化劑在反應過程中參與反應,在反應完成之后被還原成原始的成分.例如:加熱分解高錳酸鉀的時候加入錳酸鉀.高錳酸鉀分解過程當中,錳酸鉀是參與反應的,具體方式不清楚.最后以錳酸鉀出現.反應前后催化劑形態變化,顆粒變粉末,粉末
常用吸附劑介紹沸石分子篩
沸石分子篩又稱合成沸石或分子篩,其化學組成通式為:[M2(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2. mH2O式中M2(Ⅰ)和M(Ⅱ)分別為為一價和二價金屬離子,多半是鈉和鈣,n稱為沸石的硅鋁比,硅主要來自于硅酸鈉和硅膠,鋁則來自于鋁酸鈉和Al(HO)3等,它們與氫氧化鈉水溶液反應制得的膠體物,經干
簡述沸石分子篩的催化性能
沸石分子篩具有獨特的規整晶體結構,其中每一類都具有一定尺寸、形狀的孔道結構,并具有較大比表面積。 大部分沸石分子篩表面具有較強的酸中心,同時晶孔內有強大的庫侖場起極化作用。這些特性使它成為性能優異的催化劑。 多相催化反應是在固體催化劑上進行的,催化活性與催化劑的晶孔大小有關。沸石分子篩作為催
概述沸石分子篩合成的影響因素
水熱合成法是在沸石分子篩合成中最常用和最有效的途徑,深入研究分子篩水熱合成的主要困難是對分子篩的生成機理了解的還不夠清楚。但是,對于沸石分子篩的合成來說無論哪種生成機理,其晶化過程都要經歷相同的基本步驟:多硅酸鹽與鋁酸鹽的再聚合、分子篩成核、核生長、分子篩晶體的生長以及引起的二次成核。為了很好的
概述沸石分子篩的吸附性能
沸石分子篩的吸附是一種物理變化過程。產生吸附的原因主要是分子引力作用在固體表面產生的一種“表面力”,當流體流過時,流體中的一些分子由于做不規則運動而碰撞到吸附劑表面,在表面產生分子濃聚,使流體中的這種分子數目減少,達到分離、清除的目的。 由于吸附不發生化學變化,只要設法將濃聚在表面的分子趕跑,
概述沸石分子篩的合成機理
對于沸石分子篩的形成及其生長機理的深入研究有助于人們更好的設計合成新型沸石分子篩拓撲結構、擴展沸石分子篩材料合成新路線、開發沸石分子篩材料的新性質及新用途。盡管沸石分子篩的發展已經有許多年了,但是對于它的合成機理方面一直未有一個真正的定論。研究分子篩的晶化機理即具有十分重要的理論意義,也對合成新
沸石分子篩的結構單元介紹
首先從最簡單的基本結構單元進行研究。通常來講,沸石分子篩都是一個個四面體通過共用頂點來堆積得到的,所以一個四面體就是一個初級的結構單元(TO4四面體)。例如:對于silicalite-1沸石分子篩來講,它的初級結構單元是硅氧四面體([Si O4]0),并且這個四面體結構單元呈現電中性,這些硅氧四
沸石分子篩在催化領域的應用
沸石分子篩具有復雜多變的結構和獨特的孔道體系,是一種性能優良的催化劑。ZSM -5 與Y型沸石分子篩共同作用應用于 FCC 反應,以獲得較高產率的汽油、丙烯和丁烯。MCM -22 沸石分子篩在烷基化反應上具有顯著的優勢,例如 MCM -22 作為液相烷基化催化劑催化苯和乙烯反應制備乙苯,不僅提高
沸石分子篩的雙相轉變機理簡述
在人們對于沸石分子篩晶化究竟是通過液相轉變機理還是通過固相轉變機理爭執不清時,八十年代之后,又有科學家提出了雙相轉變的機理。雙向轉變機理認為液相轉變和固相轉變同時存在沸石分子篩晶化過程中,既可以分別發生在兩種晶化反應體系中,也可以同時發生在一個體系中。 Gabelica等人從對ZSM-5分子篩
沸石分子篩的固相轉變機理
固相轉變機理是由Flanigen和Breck首次提出的,也是最早提出的沸石分子篩晶化機理。他們認為: 在沸石分子篩的整個晶化過程中只是凝膠固相本身在水熱條件下產生,然后直接進行硅鋁酸鹽骨架的結構重排,進而導致了沸石分子篩的成核和晶體的生長,而在沸石分子篩晶化過程中既沒有凝膠固相的溶解,也并沒有
堿度對沸石分子篩合成的影響
沸石合成大都是在堿性條件下合成的,最常見的堿是無機堿氫氧化鈉。我們通常用Na2O/SiO2來表示體系的堿度。一般而言,堿度增加,硅鋁原料的溶解度增加,硅鋁酸鹽聚合度降低,使溶液中的過飽和度增大,從而加快成核速度,結果縮短了誘導期,使之晶化速度加快。此外,增大堿度時會使最終產品的粒子變小并且粒徑分
JACS-鄧風楊俊李申慧等-HY沸石分子篩催化劑研究
中科院武漢物理與數學所波譜與原子分子物理國家重點實驗室鄧風研究組在脫鋁HY沸石分子篩固體酸催化劑的Br?nsted酸和Lewis酸協同作用機理研究方面取得新進展,相關論文發表在近期的《美國化學會會志》(J. Am. Chem. Soc. 2007, 129, 11161-11171) 上。?HY沸石