• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 高速逆流色譜與微波輔助萃取純化側柏中的黃酮類化合物

    實驗過程中:微波輔助萃取,溫度80℃,時間29min,功率800W高速逆流色譜提取,對溶劑系統和參數條件進行系統的優化獲得較好的分離條件溶劑系統:正丁醇-乙酸乙酯-正己烷-水6∶1∶1∶12 V / V 上相有機相 為固定相下相水相 為流動相反相洗脫;進樣濃度:20mg/ mL ;進樣體積:20mL ;流速:3.0mL/ min ;轉速:850 r/ min 。 進一步分離獲得四種高純度黃酮類化合物經薄層色譜鑒定分別為A類黃酮、B類黃酮、C類黃酮、D類黃酮,但其具體結構尚待確定。 關鍵詞 高速逆流色譜 微波萃取 側柏葉 黃酮類化合物1 引言 側柏葉為柏科Cupressaceae 植物側柏Biota orientalis L . Endl . 的干燥嫩枝葉側柏別名扁柏、香柏、片柏、片松。&nb......閱讀全文

    高速逆流色譜與微波輔助萃取純化側柏中的黃酮類化合物

    ? ? 實驗過程中:微波輔助萃取,溫度80℃,時間29min,功率800W高速逆流色譜提取,對溶劑系統和參數條件進行系統的優化獲得較好的分離條件溶劑系統:正丁醇-乙酸乙酯-正己烷-水6∶1∶1∶12 V / V 上相有機相 為固定相下相水相 為流動相反相洗脫;進樣濃度:20mg/ mL ;進樣體積:

    高速逆流色譜分離與鑒定鹿藥中黃酮類化合物

    摘 要 采用高速逆流色譜(HSCCC)與其它色譜聯用的方法分離純化鹿藥中的化學成分,得到5個黃酮類化合物: 5, 7, 3′, 4′2 四羥基232甲氧基282甲基黃酮(1) 、82甲基木犀草素(2) 、3′2 甲氧基木犀草素(3) 、木犀草素(4)和槲皮素(5) ,它們均為首次自該種及該屬植物中分

    高速逆流色譜分離酸棗仁中黃酮類化合物

    摘要 目的: 利用高速逆流色譜法對酸棗仁黃酮類成分進行分離研究。方法: 以乙酸乙酯- 正丁醇- 水( 3B2B5)為溶劑系統,流動相的流速為110 mL# m in- 1, 主機轉速為1500 r# m in- 1, 檢測波長360 nm, 對酸棗仁中黃酮類化合物進行分離; 利用HPLC法測定化合物

    高速逆流色譜分離純化白芍中芍藥苷的研究

    摘 要:目的 建立了微波提取與高速逆流色譜純化白芍中芍藥苷的方法。方法 實驗采用90 %乙醇、微波功率850 W的條件下對白芍提取25 min ,提取物在正丁醇-醋酸乙酯-水(2 ∶3 ∶5) 的溶劑體系下進行高速逆流色譜純化,純化物在高效液相色譜流動相甲醇2水(70 ∶30) ;色譜柱Shim2p

    微波輔助萃取藍莓中花青素及純化的研究

    藍莓屬于杜鵑花科越桔屬,因其富含豐富的花青素而具有重要的醫學和營養保健價值。本文旨在采用能耗低、效率高、環境污染小的微波輔助萃取技術對藍莓中的花青素進行初步萃取,并選用AB-8大孔樹脂對花青素粗提液進行純化,取得較理想的花青素純品。結果表明,微波輔助萃取技術滿足對花青素萃取的要求。試驗研究主要結論如

    高速逆流色譜分離純化紫蘇葉中迷迭香酸

    摘要目的: 建立高速逆流色譜分離純化紫蘇葉中迷迭香酸的方法。方法: 采用高速逆流色譜分離純化紫蘇葉乙酸乙酯萃取部分中迷迭香酸,以石油醚- 乙酸乙酯- 甲醇- 0. 5%醋酸水溶液( 2∶ 5∶ 2∶ 5) 為溶劑體系,上相為固定相,下相為流動相,流速2. 0 mL·min - 1 ,主機轉速800

    高速逆流色譜分離純化紫蘇葉中迷迭香酸

    摘要目的: 建立高速逆流色譜分離純化紫蘇葉中迷迭香酸的方法。方法: 采用高速逆流色譜分離純化紫蘇葉乙酸乙酯萃取部分中迷迭香酸,以石油醚- 乙酸乙酯- 甲醇- 0. 5%醋酸水溶液( 2∶ 5∶ 2∶ 5) 為溶劑體系,上相為固定相,下相為流動相,流速2. 0 mL·min - 1 ,主機轉速800

    關于高速逆流色譜的高速逆流色譜的概述

      高速逆流色譜儀(High-speed Countercurrent Chromatography,簡稱HSCCC),于1982年由美國國立衛生院Ito博士研制開發的一種新型的、連續高效的液液分配色譜技術。  高速逆流色譜 ( high-speed countercurrent chromatog

    超聲波輔助萃取與微波輔助萃取的工作原理

    在超聲波的空化、粉碎的特殊作用下,細胞在溶媒中瞬間產生的空化泡崩潰而破裂,使溶媒滲透到細胞內部,從而使細胞中的成分溶于溶劑之中。在超聲波振動的作用下,促進了成分向溶媒中溶解,提高了有效成分的提出率,從而達到提取有效成分的目的.微波萃取的基本原理是微波直接與被分離物作用,即微波能直接作用于樣品基體內。

    制備型高速逆流色譜分離純化長松蘿中的松蘿酸

    摘 要:利用制備型高速逆流色譜分離純化長松蘿中的松蘿酸,經過高效液相色譜、核磁共振檢測,確定其純度及結構。將長松蘿破碎后用石油醚(60~90℃)回流浸提4h,浸提液經過濾濃縮后得到松蘿酸粗提物。采用正己烷:乙腈:乙酸乙酯:水(8:7:5:0.8,V/V)的兩相體系將所得的粗提物進行制備型高速逆流色譜

    制備型高速逆流色譜分離純化香菇多糖

    摘 要 利用高速逆流色譜儀, 研究了雙水相系統對香菇多糖的分離。溶劑系統為w ( PEG1000 ) ∶w (K2HPO4 ) ∶w (KH2 PO4 ) ∶w (H2O) = 0. 5∶1. 25∶1. 25∶7. 0,在轉速為500 r/min,流速為1. 5 mL /min的條件下,成功分離了

    雞血藤中黃酮成分的高速逆流色譜分離及抗腫瘤活性研究

    摘 要:目的 采用高速逆流色譜(HSCCC)技術分離純化雞血藤中的黃酮類抗腫瘤活性成分。方法 運用活性跟蹤分離思路,優化制備型HSCCC 分離條件,快速分離雞血藤醋酸乙酯萃取物中的黃酮類單體化合物;根據理化性質和波譜方法(ESI-MS、UV、NMR 等)鑒定化合物結構;采用MTT 方法并結合細胞形態

    高速逆流色譜的應用與發展

    從重液滴通過另一液體滴落,溶質在兩相中間實現分配的原理出發,進行設備與過程的研發轉變,20世紀60年代發明了連續液/液的高速逆流色譜(High-speed Countercurrent Chromatography,HSCCC)技術,目前已廣泛應用于生物、醫藥、天然產物、環境分析、食品等領域的分離、

    高速逆流色譜的應用與發展

    從重液滴通過另一液體滴落,溶質在兩相中間實現分配的原理出發,進行設備與過程的研發轉變,20世紀60年代發明了連續液/液的高速逆流色譜(High-speed Countercurrent Chromatography,HSCCC)技術,目前已廣泛應用于生物、醫藥、天然產物、環境分析、食品等領域的分離、

    高速逆流色譜

    高速逆流色譜(High-speed Countercurrent Chromatography,簡稱HSCCC)是由美國國家醫學院Yiochiro Ito博士于1982年首先開始的。到目前為止,此項技術已用于生物化學、生物工程、醫學、藥學、天然產物化學、有機合成、化工、環境、農業、 食品、材

    高速逆流色譜分離純化豐城雞血藤中刺芒柄花素

    摘 要:目的:確定高速逆流色譜分離制備高純度豐城雞血藤黃酮類物質刺芒柄花素的條件。方法:利用高效液相色譜測定刺芒柄花素在兩相溶劑體系中的分配系數K 值,通過K 值優化確定高速逆流色譜分離的兩相溶劑體系,并測定刺芒柄花素的純度。結果:用于高速逆流色譜分離的兩相溶劑體系為:正己烷- 乙酸乙酯- 甲醇-

    高速逆流色譜在保健食品功能成分純化中的應用

    摘 要:高速逆流色譜( high speed countercurrent chromatography,簡稱HSCCC)是一種快速、高效、連續的液-液色譜分離技術,在中藥、生化、保健食品、天然產物化學、環境分析等領域有著廣泛的應用,本文綜述了高速逆流色譜在食品功能成分分離純化領域的應用,并對高速逆

    高速逆流色譜法分離純化綠原酸研究

    摘 要:利用高速逆流色譜技術分離純化金銀花中的綠原酸。選擇正丁醇- 冰乙酸- 水(4:1:5,V/V)系統來分離,分離結果經高效液相(HPLC)檢測純度達到98.1%,綠原酸的得率為95%。關鍵詞:綠原酸;高速逆流色譜;分離????綠原酸(chlorogenic acid)為多酚類化合物,具有抗菌、

    高速逆流色譜法分離純化紅曲色素組分

    摘 要:采用高速逆流色譜法(HSCCC)分離純化紅曲發酵產品中6種Azaphilone類色素組分。篩選弱極性分離溶劑系統正己烷- 醋酸乙酯- 甲醇- 水,研究6 種色素組分在不同溶劑體系中的分配系數,建立兩步逆流萃取分離的技術路線。經過HPCCC 分離純化和丙酮結晶操作,得到6 種高純度的Azaph

    高速逆流色譜分離純化防風中升麻素苷

    摘要建立了高速逆流色譜分離制備防風中有效成分升麻素苷和5-O-甲基維斯阿米醇苷的方法。防風根的粉末經甲醇浸泡提取和減壓蒸餾,得粗提浸膏。以V( 乙酸乙酯) ∶ V( 正丁醇) ∶ V( 水) = 2∶7∶9 為溶劑,上相為固定相,下相為流動相,流速2. 0 mL/min。從316 mg 防風粗提物中

    藥物中對高速逆流色譜的應用

    一、制備中藥化學成分對照品國內外學者已采用高速逆流色譜技術分離提純了許多中藥化學成分對照品, 如從金銀花中分離綠原酸(純度94.8%), 從黃芪中分離異黃酮苷(95%),從紫草中分離紫草寧(98.9%),從二氫楊梅素粗提物中純化二氫楊梅素川(99%), 從虎仗中分離白黎蘆醇(99%), 從肉蓯蓉ac

    高速逆流色譜分離純化EGCG3_Me的研究

    摘要: 首次采用高速逆流色譜法對經自制聚酰胺初步分離的表沒食子兒茶素-3-( 3″-O-甲基) 沒食子酸酯( EGCG3″Me) 樣品中的EGCG3″Me 單體進行分離純化。結果表明,選擇水- 甲醇- 乙酸乙酯- 正己烷( 體積比5 ∶ 2 ∶ 9 ∶ 1) 為高速逆流色譜分離的兩相溶劑系統,上相為

    高速逆流色譜儀分離純化蘆薈多糖的研究

    摘要:采用紫外-可見分光光度計法進行了高速逆流色譜技術分離蘆薈多糖的溶劑系統研究,得出了高速逆流色譜分離蘆薈多糖的溶劑系統為w( PEG600) ∶ w( KH2PO4) ∶ w( K2HPO4) ∶ w( H2O) = 5∶ 15∶ 15∶ 65,加入NaCl 的質量分數為2%。在水浴溫度30 ℃

    超聲波輔助萃取與微波輔助萃取的工作原理及差異

    在超聲波的空化、粉碎的特殊作用下,細胞在溶媒中瞬間產生的空化泡崩潰而破裂,使溶媒滲透到細胞內部,從而使細胞中的成分溶于溶劑之中。在超聲波振動的作用下,促進了成分向溶媒中溶解,提高了有效成分的提出率,從而達到提取有效成分的目的.微波萃取的基本原理是微波直接與被分離物作用,即微波能直接作用于樣品基體內。

    超聲波輔助萃取與微波輔助萃取的工作原理及差異

    在超聲波的空化、粉碎的特殊作用下,細胞在溶媒中瞬間產生的空化泡崩潰而破裂,使溶媒滲透到細胞內部,從而使細胞中的成分溶于溶劑之中。在超聲波振動的作用下,促進了成分向溶媒中溶解,提高了有效成分的提出率,從而達到提取有效成分的目的.微波萃取的基本原理是微波直接與被分離物作用,即微波能直接作用于樣品基體內。

    高速逆流色譜法分離純化金銀花中的綠原酸

    摘要 目的: 采用高速逆流色譜法對金銀花提取液中的綠原酸進行分離純化。方法: 采用微波輔助提取金銀花中的綠原酸,提取液經過濾、濃縮, 所得浸膏作為高速逆流色譜分離的樣品。采用TBE - 300A型高速逆流色譜儀, 以正丁醇- 乙酸- 水( 4B1B5)為溶劑體系進行分離純化, 用下相作流動相, 上相

    高速逆流色譜的發展歷史與優勢

      高速逆流色譜屬于逆流色譜的范疇,逆流色譜是一種新型的分離手段,它的主要分離原理是利用樣品在固定相和流動相之間的差異也就是分配比不同而進行分離的,值得注意的是逆流色譜的固定相和流動相都是液體,其主要優點是沒有傳統色譜的死吸附,樣品的回收率高等特點。  逆流色譜源于逆流分溶法,也就是用實驗室經常使用

    高速逆流色譜的發展歷史與優勢

      高速逆流色譜屬于逆流色譜的范疇,逆流色譜是一種新型的分離手段,它的主要分離原理是利用樣品在固定相和流動相之間的差異也就是分配比不同而進行分離的,值得注意的是逆流色譜的固定相和流動相都是液體,其主要優點是沒有傳統色譜的死吸附,樣品的回收率高等特點。  逆流色譜源于逆流分溶法,也就是用實驗室經常使用

    高速逆流色譜的發展歷史與優勢

      高速逆流色譜屬于逆流色譜的范疇,逆流色譜是一種新型的分離手段,它的主要分離原理是利用樣品在固定相和流動相之間的差異也就是分配比不同而進行分離的,值得注意的是逆流色譜的固定相和流動相都是液體,其主要優點是沒有傳統色譜的死吸附,樣品的回收率高等特點。  逆流色譜源于逆流分溶法,也就是用實驗室經常使用

    高速逆流色譜的發展歷史與優勢

      逆流色譜源于逆流分溶法,也就是用實驗室經常使用的分液漏斗進行連續的液液萃取,根據樣品在兩種互不相溶的溶劑中分配比不同而進行分離。  逆流色譜早期發展的方法有液滴逆流色譜,旋轉小室逆流色譜等。但是作為一種分離手段,早期發展的逆流色譜不能滿足高效快速的分離,分離的周期很長,效率很低。  在70年代,

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载