通過石墨烯膜進行質子傳輸會產生巨大光電效應
英國曼徹斯特大學Geim研究團隊---通過石墨烯膜進行質子傳輸會產生巨大光電效。石墨烯最近已被證明對熱質子,氫原子核是可透性的,于是人們對其在相關技術中用作質子傳導膜產生了極大興趣。然而,目前仍然不清楚光對質子滲透的影響情況。在該研究中,Lozada-Hidalgo 等人證明了,透過鉑納米顆粒修飾的石墨烯進行的質子傳輸過程在可見光照射下可以被大大增強。通過電氣測量和質譜分析,發現其光響應度約為 104 A W-1,該值可以轉化為每個光子隨著響應時間增加,其對應約有 104個質子的增益。如此的特性可與基于硅和新型二維材料的最先進光電探測器的電子傳輸過程相媲美。這樣的光質子效應對于石墨烯將來用于燃料電池和氫同位素分離是很重要的。該發現對其它應用領域,比如光誘導水分解、光催化和新型光電探測器等方面或許也會有重要的參考價值。 該研究工作由英國曼徹斯特大學Geim研究團隊于近日發表在Nature Nanotechnology上。原文......閱讀全文
通過石墨烯膜進行質子傳輸會產生巨大光電效應
英國曼徹斯特大學Geim研究團隊---通過石墨烯膜進行質子傳輸會產生巨大光電效。石墨烯最近已被證明對熱質子,氫原子核是可透性的,于是人們對其在相關技術中用作質子傳導膜產生了極大興趣。然而,目前仍然不清楚光對質子滲透的影響情況。在該研究中,Lozada-Hidalgo 等人證明了,透過鉑納米顆粒修
石墨烯膜淡化海水成功
海水淡化是人類追求了幾百年的夢想,但是海水淡化受技術和成本制約仍未得到廣泛應用。記者日前從南京工業大學獲悉,該校材料化學工程國家重點實驗室金萬勤教授團隊與國內相關科研單位合作,在石墨烯膜淡化海水的研究上獲得突破性進展,提出并實現了用水合離子自身精確控制石墨烯膜的層間距,展示了其出色的離子篩分和海
怎么測量石墨烯膜折疊性能
1.顯微鏡法1)用掃描電子顯微鏡(SEM)掃描隧道顯微鏡(STM)透射電子顯微鏡(TEM)來表征生長域和表面形態。2)用原子力顯微鏡(AFM)來表征表面形態、厚度、層的均勻性、疇生長。2.光譜法1)拉曼光譜——鑒定石墨烯片并獲得層數信息2)紅外光譜——評估官能團的存在3)紫外-可見光譜——幫助評估氧
科學家精確“裝訂”石墨烯膜
近日,中科院上海應用物理研究所方海平團隊提出并實現了通過水合離子精確控制石墨烯膜的層間距,展示出優異的離子篩分和海水淡化性能。相關成果已在線發表于《自然》雜志,并申請了相應的國內和PCT專利。 對于石墨烯納米片,要實現其層間距固定到1納米左右并精確到1/10納米這么小的尺度,其困難可想而知,更
石墨烯基分離膜研究進展
工業化進程的快速發展,給人們生活帶來便利的同時,也面臨著廢水、廢氣等污染導致的環境問題。作為治理環境的有效技術之一,膜分離技術出現于20世紀初。在實際應用中,膜分離技術面臨諸多挑戰,膜污染以及低分離效率為其主要限制因素。為進一步發展完善膜分離技術,不同的分離膜材料相繼被開發出來,其中具有優異選擇
簡介石墨烯基分離膜的應用
石墨烯是可作分離膜的最薄材料,完整的石墨烯對于所有分子具有不可滲透性,而將石墨烯納米片進行面面堆疊所形成的宏觀膜可以利用片與片之間的納米通道進行物質分離。另一方面,基于分子篩分效應引入納米孔或人工設計褶皺得到石墨烯材料可作為高效分離膜。石墨烯基分離膜不僅可用于氣體分離、CO2捕集,而且在海水淡化
石墨烯中蛇形運動的電子
科學家發現當他們拉伸或以其他方式操縱石墨烯的蜂窩結構,或者對其施加電場或磁場時,便可直接控制電流。這標志著人類首次成功地直接控制電子的通-斷轉變,并且毫無損失的引導電子運行。 雖然二維石墨烯的競爭對手不斷涌現,但是還沒有哪種新材料能像石墨烯那樣讓電子如同光子一樣以如此小的電
石墨烯柔性導電膜制備成功-應用價值重大
近日,北京大學納米化學研究中心成功制備出高品質石墨烯/PET柔性塑料電極,并在此基礎上批量制備了石墨烯/金屬納米線/PET的復合型柔性導電薄膜。其在惡劣的工作環境中顯示出優良的耐久性能,在下一代柔性電子和光電子領域有重大的潛在應用價值。 北京大學納米化學研究中心的研究人員開發出一種新的卷對卷
“超級電影”展示石墨烯中電子波圖像
據美國物理學家組織網近日報道,美國能源部阿爾貢國家實驗室的先進光子源(APS)和伊利諾斯大學厄本那—香檳分校的弗雷德里克·塞茨材料研究實驗室開展合作,在石墨晶體上進行X射線散射實驗,利用重建算法制作了非支撐石墨烯層中電荷的動態“電影”——這也是迄今為止最快的“電影”,達到了0.53
石墨烯能有效傳導電子自旋
英國曼徹斯特大學教授安德烈·海姆(Andre Konstantin Geim)與其同事因制成石墨烯而榮獲去年諾貝爾物理學獎。日前,他和同事又在新一期美國《科學》雜志上報告說,他們發現石墨烯能有效傳導電子自旋,有望成為下一代基于電子自旋的電子元件材料。 目前的電子元件基本上都是
美利用電子成像技術分析石墨烯
美國能源部橡樹嶺國家實驗室的科學家11月15日表示,利用實驗室的電子顯微鏡獲得的前所未有的石墨烯內單獨原子的圖像,人們有望全面解開該材料的應用潛能,滿足從發動機燃燒室到電子消費品的需求。 人們首次獲得石墨烯晶體是在2004年。石墨烯為二維(單層原子)結構,硬度超過鉆石,強度賽過鋼材,且具有
新型石墨烯組裝膜“能屈能伸”-折疊手機將成現實
通過巧妙設計,浙江大學高分子系高超教授團隊研發出一種新型石墨烯組裝膜:它是目前導熱率最高的宏觀材料,同時具有超柔性,能反復折疊6000次,承受彎曲十萬次。 這一進展解決了宏觀材料高導熱和高柔性不能兼顧的世界性難題,有望廣泛應用于高效熱管理、新一代柔性電子器件及航空航天等領域。 高超介紹,電子
石墨烯薄膜可冷卻高功率電子器件
隨著設備和組件變得越來越小,在未來超高效電子系統的開發中,電子和光電子的散熱是一個嚴重問題。現在,瑞典查爾姆斯理工大學的研究人員開發出一種通過功能化石墨烯納米薄片高效冷卻電子器件的技術,或可為解決這一問題鋪平道路。相關研究成果發表在最新一期的《自然·通訊》雜志上。 在實驗中,科學家研究了被固
石墨烯新材料改寫電子制造業格局
石墨烯是由單層碳原子構成的六角形蜂巢晶格的平面二維材料,結構穩定,各項物理性質優異。石墨烯的發現顛覆了凝聚態物理學界既往的二維材料不能在有限溫度下存在的觀念。 石墨烯具備眾多優異的力學、光學、電學和微觀量子性質,是目前最薄也是最堅硬的納米材料,同時具備透光性好、導熱系數高、電子遷移率高、電阻
石墨烯薄膜可冷卻高功率電子器件
隨著設備和組件變得越來越小,在未來超高效電子系統的開發中,電子和光電子的散熱是一個嚴重問題。現在,瑞典查爾姆斯理工大學的研究人員開發出一種通過功能化石墨烯納米薄片高效冷卻電子器件的技術,或可為解決這一問題鋪平道路。相關研究成果發表在最新一期的《自然·通訊》雜志上。 在實驗中,科學家研究了被固定
磁性石墨烯或將引領電子領域新革命
日前,科學家們對于石墨烯的認識,已經不僅僅局限于它的超導性、機械性和光學性能等;石墨烯最新的磁性特征,或將在電子領域掀起一場突破性技術革命。 來自IMDEA納米科學研究所和西班牙馬德里大學的一項研究稱,通過實驗,研究者能夠使石墨烯獲得磁性。該研究發表在Nature Physics雜志上
全球首款石墨烯電子紙在廣州問世
4月27日上午,全球首款石墨烯電子紙新聞發布會在廣州南沙舉行。 國家“千人計劃”特聘專家、廣州奧翼電子科技股份有限公司總經理陳宇介紹石墨烯電子紙研制情況。 該石墨烯電子紙可與柔性或剛性驅動底板相結合,制作出剛性石墨烯電子紙顯示屏和超柔性石墨烯電子紙顯示屏。 科研人員展示石墨烯電子紙的應用
氧化石墨烯和石墨烯性能的區別
氧化石墨烯和石墨烯性能的區別采用改進的Hummers法制備了氧化石墨烯,將其采用水合肼還原獲得石墨烯,以氧化石墨烯和石墨烯為吸附劑,分別采用透射電鏡(TEM),傅里葉變換紅外光譜(FT-IR),拉曼光譜(RS)和X射線衍射光譜(XPS)對陰陽離子的不同吸附性能進行了分析表征.結果表明:兩吸附劑對羅丹
石墨烯檢測方法大匯總,石墨烯快速檢測
超全面石墨烯檢測方法大匯總,看完就是石墨烯檢測專家了! 2004年,康斯坦丁博士通過膠帶從石墨上分離出石墨烯這種“神器的材料”,它的出現在全世界范圍內引起了極大轟動…… 石墨烯具有非同尋常的導電性能、極低的電阻率極低和極快的電子遷移的速度、超出鋼鐵數十倍的強度,極好的透光性……這些優異的性能
科研人員制備新型石墨烯膜,高效利用鹽湖資源
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507754.shtm
新型石墨烯膜高效分離鹽湖中的鋰、鉀、鎂
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507762.shtm近日,蘭州大學教育部稀有同位素前沿科學中心教授陳熙萌、研究員李湛團隊在《納米快報》上發表題為“渦流剪切力場制備具有牛頓環結構的超平氧化石墨烯膜用于離子篩分”的成果,通過研究氧化石墨烯納
微電子所在石墨烯電子器件研制上獲得整體突破
石墨烯材料具有優良的物理特性和易于與硅技術相結合的特點,被學術界和工業界認為是推進微電子技術進一步發展的極具潛力的材料。日前,中國科學院微電子研究所微波器件與集成電路研究室(四室)石墨烯研究小組成員(麻芃、郭建楠、潘洪亮)在金智研究員和劉新宇研究員的帶領下,分別在采用微機械剝離方
石墨烯表征手段
石墨烯的表征主要分為圖像類和圖譜類圖像類以光學顯微鏡透射電鏡TEM掃描電子顯微鏡、SEM和原子力顯微分析AFM為主而圖譜類則以拉曼光譜Raman紅外光譜IRX射線光電子能譜、XPS和紫外光譜UV為代表其中TEM、SEM、Raman、AFM和光學顯微鏡一般用來判斷石墨烯的層數而IRX、XPS和UV則可
石墨烯怎么制作
石墨烯制作方法:一、機械剝離法機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結構。2004年,英國兩位科學使用透明膠帶對天然石墨進行層層剝離取得石墨烯的方法,也歸為機械剝離法。二、氧化還原法氧化還原法是通過使用硫酸、硝酸
北京石墨烯研究院石墨烯晶元、烯薄膜設備采購公告
國信招標集團股份有限公司受北京石墨烯研究院委托,根據《中華人民共和國政府采購法》等有關規定,現對北京石墨烯研究院2018年石墨烯晶元批量制備設備和高質量石墨烯薄膜批量制備設備采購項目進行公開招標,歡迎合格的供應商前來投標。 項目名稱:北京石墨烯研究院2018年石墨烯晶元批量制備設備和高質量石墨
石墨烯和石墨的區別,聯系
石墨烯和石墨的區別如下:一、性質不同1、石墨烯:一種由碳原子以sp2雜化軌道組成六角型呈蜂巢晶格的二維碳納米材料。2、石墨:是碳的一種同素異形體。二、用處不同1、石墨烯:具有優異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫學和藥物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料
科學家研發出高導熱超柔性石墨烯組裝膜
近日,浙江大學高分子系高超團隊研發出一種高導熱超柔性石墨烯組裝膜,導熱率最高達到2053W/mK(瓦特/米開),接近理想單層石墨烯導熱率的40%,創造宏觀材料導熱率的新紀錄;同時該材料由微褶皺化大片石墨烯組裝而成,具有超柔性,可被反復折疊6000次,承受彎曲十萬次。 這一最新成果解決了宏觀材料
新型石墨烯膜如何高效分離鹽湖中的鋰、鉀、鎂?
近日,蘭州大學教育部稀有同位素前沿科學中心教授陳熙萌、研究員李湛團隊在《納米快報》上發表題為“渦流剪切力場制備具有牛頓環結構的超平氧化石墨烯膜用于離子篩分”的成果,通過研究氧化石墨烯納米片在渦旋剪切力場中的結構組成的動態變化過程,發展出一種超級簡單的渦旋力場拉伸堆積成膜策略,制備出高選擇性、低能
上海微系統所石墨烯導熱膜尺寸效應研究取得進展
石墨烯導熱膜是電子器件和系統重要的熱管理材料。近日,中國科學院上海微系統與信息技術研究所納米材料與器件實驗室丁古巧團隊在石墨烯導熱膜尺寸效應研究方面取得進展。該工作通過建立亞微米-微米氧化石墨烯原料橫向尺寸與導熱膜熱導率之間的聯系,深化了對于3000 ℃高溫下氧化石墨烯組裝體還原重組過程的認知,為組
打開石墨烯帶隙,開啟石墨烯芯片制造領域大門
天津大學納米顆粒與納米系統國際研究中心的馬雷教授團隊攻克了長期以來阻礙石墨烯電子學發展的關鍵技術難題,在保證石墨烯優良特性的前提下,打開了石墨烯帶隙,成為開啟石墨烯芯片制造領域大門的重要里程碑。該研究成果論文《碳化硅上生長的超高遷移率半導體外延石墨烯》1月3日在線發表于國際期刊《自然》。 據介