X射線熒光光譜法的簡介
X射線熒光光譜法正是基于以上物理學原理而產生的,從X射線管產生X射線,X射線經過濾或單色化處理入射樣品,入射樣品X射線與物質相互作用,產生的元素特征X射線熒光,進入探測器記錄其強度,能量色散型探測器的各種效應。都有可以遵循的X射線熒光的物理學理論,而這些明確的物理學理論,有大量的規律可循,進而可以建立理論數據庫,譬如基本參數庫等,也可以將明確的物理學現象數學模型化,利用軟件技術,形成針對X射線熒光整個物理過程強大的計算軟件。......閱讀全文
X射線熒光光譜法的簡介
X射線熒光光譜法正是基于以上物理學原理而產生的,從X射線管產生X射線,X射線經過濾或單色化處理入射樣品,入射樣品X射線與物質相互作用,產生的元素特征X射線熒光,進入探測器記錄其強度,能量色散型探測器的各種效應。都有可以遵循的X射線熒光的物理學理論,而這些明確的物理學理論,有大量的規律可循,進而可
波長色散x射線熒光光譜法的簡介
波長色散x射線熒光光譜法wavelength-}isl3ersi}c Y-rayIluoreacenc} sperrrnmeuy X射線照射試樣激發產生各種波長的光,通過晶體衍射進行空間色散,分別測量不同波長的x射線分析線峰值強度,進行定性和定量分析的方法。適用于原子序數4(鈹)以上所有化學元素
X射線熒光光譜法
方法提要用Li2B2O7和NaBO2混合溶劑,將鎢精礦粉和純WO3作高倍稀釋熔融制成玻璃片,按WLα分析線X射線熒光光譜儀測定其強度值,換算成相對強度即可得出試樣中三氧化鎢的含量。此法適用于鎢精礦中w(WO3)為0.5%~80%的試樣。儀器波長色散X射線熒光光譜儀器儀,銠靶X光管(≥3kW)。高溫熔
X射線熒光光譜法
方法提要用Li2B2O7和NaBO2混合溶劑,將鎢精礦粉和純WO3作高倍稀釋熔融制成玻璃片,按WLα分析線X射線熒光光譜儀測定其強度值,換算成相對強度即可得出試樣中三氧化鎢的含量。此法適用于鎢精礦中w(WO3)為0.5%~80%的試樣。儀器波長色散X射線熒光光譜儀器儀,銠靶X光管(≥3kW)。高溫熔
X射線熒光光譜法優點
X射線熒光光譜法-----原級X射線發射光譜法首先,與原級X射線發射光譜法比,不存在連續X射線光譜,以散射線為主構成的本底強度小,譜峰與本底的對比度和分析靈敏度顯著提高,操作簡便,適合于多種類型的固態和液態物質的測定,并易于實現分析過程的自動化。樣品在激發過程中不受破壞,強度測量的再現性好,以及便于
X射線熒光光譜法優點
X射線熒光光譜法-----原級X射線發射光譜法首先,與原級X射線發射光譜法比,不存在連續X射線光譜,以散射線為主構成的本底強度小,譜峰與本底的對比度和分析靈敏度顯著提高,操作簡便,適合于多種類型的固態和液態物質的測定,并易于實現分析過程的自動化。樣品在激發過程中不受破壞,強度測量的再現性好,以及便于
X射線熒光光譜法的分析
X射線熒光光譜法---能量色散 利用初級X射線光子或其他微觀離子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學態研究的方法。按激發、色散和探測方法的不同,分為X射線光譜法(波長色散)和X射線能譜法(能量色散)。 當原子受到X射線光子(原級X射線)或其他微觀粒子的激發
X射線熒光光譜法的應用
質成分分析 ①定性和半定量分析具有譜線簡單、不破壞樣品、基體的吸收和增強效應較易克服、操作簡便、測定迅速等優點,較適合于作野外和現場分析,而且一般使用便攜式X射線熒光分析儀,即可達到目的。如在室內使用X射線能譜儀,則可一次在熒光屏上顯示出全譜,對物質的主次成分一目了然,有其獨到之處。 ② 定量
X射線熒光光譜法的優點
X射線熒光光譜法-----原級X射線發射光譜法 首先,與原級X射線發射光譜法比,不存在連續X射線光譜,以散射線為主構成的本底強度小,譜峰與本底的對比度和分析靈敏度顯著提高,操作簡便,適合于多種類型的固態和液態物質的測定,并易于實現分析過程的自動化。樣品在激發過程中不受破壞,強度測量的再現性好,
X射線熒光光譜法的展望
X射線熒光光譜法 X射線熒光光譜法同其他分析技術一樣,不是完美無缺的。在物質成分分析中,它對一些最輕元素(Z≤8)的測定還不完全成熟,只能是屬于初期應用的階段。常規分析中某些元素的測定靈敏度不如原子發射光譜法高(采用同步輻射和質子激發的 X射線熒光分析除外),根據各個工業部門生產自動化的要求(
X射線熒光光譜法的定義
X射線熒光光譜法是照射原子核的X射線能量與原子核的內層電子的能量在同一數量級時,核的內層電子共振吸收射線的輻射能量后發生躍遷,而在內層電子軌道上留下一個空穴,處于高能態的外層電子跳回低能態的空穴,將過剩的能量以X射線的形式放出,所產生的X射線即為代表各元素特征的X射線熒光譜線。其能量等于原子內殼層電
X射線熒光分析技術簡介
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級x射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級x射線)而進行物質成分分析和化學形態研究的方法。
X射線熒光分析方法的簡介
X射線熒光分析方法是一種現代光學分析方法。X射線照射物質時,除發生散射現象和吸收現象外,還能產生次級X射線,即熒光X射線。熒光X射線的波長只取決于物質中原子的種類。因此,根據熒光X射線的波長就可確定物質的元素組分;再根據該熒光X射線的強度,還可定量分析所屬元素的含量。20世紀50年代開始發展,6
關于X射線熒光分析的簡介
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級x射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級x射線)而進行物質成分分析和化學形態研究的方法。
X射線熒光分析的技術簡介
X光熒光分析又稱X射線熒光分析(XRF)技術,即是利用初級X射線光子或其他微觀粒子激發待測樣品中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學形態研究的方法。 X射線是一種電磁輻射,按傳統的說法,其波長介于紫外線和γ射線之間,但隨著高能電子加速器的發展,電子軔致輻射所產生的X射線的
X射線熒光光譜法的熒光產額介紹
當一束能量足夠大的X射線光子與一種物質的原子相互作用時,逐出一個軌道電子而出現一個空穴,所產生的的空穴并非均能產生特征X射線,還會產生俄歇電子。產生特征X射線躍遷的概率就是熒光產額,俄歇躍遷的概率成俄歇產額。
X射線熒光光譜法的未來展望
X射線熒光光譜法同其他分析技術一樣,不是完美無缺的。在物質成分分析中,它對一些最輕元素(Z≤8)的測定還不完全成熟,只能是屬于初期應用的階段。常規分析中某些元素的測定靈敏度不如原子發射光譜法高(采用同步輻射和質子激發的 X射線熒光分析除外),根據各個工業部門生產自動化的要求(例如選礦流程中的自動
X射線熒光光譜法的詳細介紹
利用初級X射線光子或其他微觀離子激發待測物質中的原子,使之產生熒光(次級X射線)而進行物質成分分析和化學態研究的方法。按激發、色散和探測方法的不同,分為X射線光譜法(波長色散)和X射線能譜法(能量色散)。 當原子受到X射線光子(原級X射線)或其他微觀粒子的激發使原子內層電子電離而出現空位,原子
X射線熒光光譜法痕量元素測定
在物質成分的分析方面主要包括克服基體效應的基礎研究和擴大分析應用范圍兩方面。現在,基體效應的數學校正法正在通過校正模型的更深入研究和計算機軟件的進一步開發,向更高水平的方向發展。而且,隨著制樣技術的逐步自動化,各種物理化學前處理方法的改進,對于擴大分析含量范圍,包括進一步開展痕量元素測定等工作,
X射線熒光分析法簡介
X射線熒光分析法(X-ray fluorescence analysis),是對固體或液體試樣進行化學分析的一種非破壞性物理分析法。試樣在強X射線束照射下產生的熒光X射線被已知高點陣間距的晶體衍射而取得熒光X射線光譜。這種譜線的波長是試樣中元素定性分析的依據;譜線的強度是定量分析的依據。
X射線熒光光譜法XRF樣品的要求
1.粉末樣品需提供3-5g,樣品要200目以下,完全烘干; 2.輕合金(鋁鎂合金)厚度不低于5mm,其他合金不小于1mm,其他材料厚度需滿足3-5mm; 3.檢測單元表面盡量平整,且尺寸為4-4.5cm。
X射線熒光光譜法的重要作用
隨著大功率 X射線管和同步輻射源的應用、各種高分辨率X射線分光計的出現、計算機在數據處理方面的廣泛應用,以及固體物理和量子化學理論計算方法的進步,通過X射線光譜的精細結構(包括譜線的位移、寬度和形狀的變化等)來研究物質中原子的種類及基的本質、氧化數、配位數、化合價、離子電荷、電負性和化學鍵等,已
X射線熒光光譜法的優點有哪些?
與原級X射線發射光譜法比,不存在連續X射線光譜,以散射線為主構成的本底強度小,譜峰與本底的對比度和分析靈敏度顯著提高,操作簡便,適合于多種類型的固態和液態物質的測定,并易于實現分析過程的自動化。樣品在激發過程中不受破壞,強度測量的再現性好,以及便于進行無損分析等。其次,與原子發射光譜法相比,除輕
質子激發X射線熒光分析的簡介
利用原子受質子激發后產生的特征 X射線的能量和強度來進行物質定性和定量分析的方法。簡稱質子 X射線熒光分析,英文縮寫為PIXE。質子X 射線熒光分析是20 世紀70 年代發展起來的一種多元素微量分析技術,其分析靈敏度可達10-16 克,相對靈敏度可達10-6~10-7 克/克。原則上可分析原子序
X射線熒光分析法的簡介
中文名稱X射線熒光分析法英文名稱X-ray fluorescence analysis定 義對固體或液體試樣進行化學分析的一種非破壞性物理分析法。試樣在強X射線束照射下產生的熒光X射線被已知高點陣間距的晶體衍射而取得熒光X射線光譜。這種譜線的波長是試樣中元素定性分析的依據;譜線的強度是定量分析的依
X射線熒光光譜法基本信息介紹
X射線熒光光譜法是照射原子核的X射線能量與原子核的內層電子的能量在同一數量級時,核的內層電子共振吸收射線的輻射能量后發生躍遷,而在內層電子軌道上留下一個空穴,處于高能態的外層電子跳回低能態的空穴,將過剩的能量以X射線的形式放出,所產生的X射線即為代表各元素特征的X射線熒光譜線。其能量等于原子內殼
全反射X射線熒光(TXRF)應用簡介
全反射X射線熒光(TXRF)具有優異的檢出限(低至ppt或pg),與其它具有類似元素檢出限的檢測手段相比,具有基體效應小、樣品需求量小、操作相對簡單、運行成本低等優勢。 TXRF一次可以對70多種元素進行同時分析,這是原子吸收ETAAS和FAAS方法難以完成的。與質譜儀中的ICP-MS和GDM
x射線熒光光譜儀簡介
x射線熒光光譜儀提供了一種最簡單,最準確,最經濟的分析方法,可用于確定多種類型材料的化學成分。它是無損且可靠的,不需要或只需很少的樣品制備,適用于固體,液體和粉末狀樣品。它可以用于從鈉到鈾的多種元素,并提供亞ppm級以下的檢測限;它也可以輕松,同時地測量高達100%的濃度。
X射線熒光光譜儀簡介
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析F(9)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水
X-射線熒光光譜法的應用領域介紹
X 射線熒光光譜法可用于冶金、地質、化工、機械、石油、建材等工業部門,以及物理、化學、生物、地學、環境科學、考古學等。還可用于測定涂層和金屬薄膜的厚度和組成以及動態分析等。 在常規分析和某些特殊分析方面,包括工業上的開環單機控制和閉環聯機控制,本法均能發揮重大作用。分析范圍包括原子序數Z≥3(