紅外光譜儀使用需要注意的事項
紅外光譜儀是利用物質對不同波長的紅外輻射的吸收特性,進行一系列精密分析的儀器。手持式近紅外光譜儀各項性能長期穩定,保證數據具有良好再現性;功能齊全的化學計量學軟件;很好的支持建立模型和分析;準確并適用范圍足夠寬的模型。 紅外光譜儀在使用過程中需要注意以下幾個事項: 一、注意要符合規定的環境條件來使用,值得相信的紅外光譜儀廠家提醒要注意實驗室的溫度以及相對濕度都應該在標準范圍以內,所用電源應配備有穩壓裝置和接地線。為了更好的把關這些條件,紅外實驗室的面積不要太大,能放得下必須的儀器設備即可,但室內一定要有除濕裝置。還有實驗室里的CO2含量不能太高,因此實驗室里的人數應盡量少,無關人員最好不要進入,還要注意適當通風換氣。 二、為防止儀器受潮而影響使用壽命,紅外光譜儀商家強調紅外實驗室應經常保持干燥,即使儀器不用,也應每周開機至少兩次,每次半天,同時開除濕機除濕。特別是霉雨季節,最好是能每天開除濕機。還有使用紅外光譜儀測定用......閱讀全文
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
紅外光譜的原理
紅外光譜的原理當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射后發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。所以,紅外光譜法實質上是一種根據分子內部原子間的
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
紅外光譜實驗技術
紅外光譜實驗技術一.?實驗目的1.?掌握固體和液體樣品的常規制樣方法2.?了解傅里葉變換紅外光譜儀的工作原理和使用方法3.?了解ATR光譜附件的工作原理并掌握其使用方法?二.?實驗內容1.固體樣品的制備方法:壓片法將固體樣品與金屬鹵化物(KBr)按適當比例混合,于瑪瑙研缽中快速研磨成極細的粉末(~2
如何分析紅外光譜
你可以按如下步驟來:(1)首先依據譜圖推出化合物碳架類型:根據分子式計算不飽和度,公式:不飽和度=F+1+ (T-O)/2 其中:F:化合價為4價的原子個數(主要是C原子),T:化合價為3價的原子個數(主要是N原子),O:化合價為1價的原子個數(主要是H原子),例如:比如苯:C6H6,不飽和度=6+
紅外光譜的原理
紅外光譜的原理:當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射后發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。所以,紅外光譜法實質上是一種根據分子內部原子間
什么是紅外光譜
紅外光譜原理概述紅外光譜與分子的結構密切相關,是研究表征分子結構的一種有效手段,與其它方法相比較,紅外光譜由于對樣品沒有任何限制,它是公認的一種重要分析工具。在分子構型和構象研究、化學化工、物理、能源、材料、天文、氣象、遙感、環境、地質、生物、醫學、藥物、農業、食品、法庭鑒定和工業過程控制等多方面的
如何分析紅外光譜
你可以按如下步驟來:(1)首先依據譜圖推出化合物碳架類型:根據分子式計算不飽和度,公式:不飽和度=F+1+ (T-O)/2 其中:F:化合價為4價的原子個數(主要是C原子),T:化合價為3價的原子個數(主要是N原子),O:化合價為1價的原子個數(主要是H原子),例如:比如苯:C6H6,不飽和度=6+
什么是紅外光譜?
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜,又稱分子振動光譜或振轉光譜
紅外光譜工作原理
直接用紅外光分光當然也可以,最早的紅外光譜儀就是這樣的,但是這樣的紅外光譜儀采集的效率很低,而且信噪比也不高,后來逐漸被傅立葉變換紅外光譜儀做取代。紅外光譜儀一般分為兩類,一種是光柵掃描的,就是直接用紅外光分光。目前很少使用了;另一種是邁克爾遜干涉儀掃描的,稱為傅立葉變換紅外光譜,這是目前最廣泛使用
紅外光譜的分區
1. 紅外光譜的分區 通常將紅外光譜分為三個區域:近紅外區(0.75~2.5μm)、中紅外區(2.5~25μm)和遠紅外區(25~300μm)。一般說來,近紅外光譜是由分子的倍頻、合頻產生的;中紅外光譜屬于分子的基頻振動光譜;遠紅外光譜則屬于分子的轉動光譜和某些基團的振動光譜。 由于絕大多數
烯烴紅外光譜特征
烯烴分子有三類特征吸收峰(ν=C-H、νC=C、δ=C-H) 1、ν=C-H (包括苯環的C-H、環丙烷的C-H)在3000cm-1以上,苯出現在3010-3100cm-1的范圍內,在甲基及亞甲基伸縮振動大峰左側出現一個小峰,這是識別不飽和化合物的一個有效特征吸收。 2、νC=C 孤立
紅外光譜分析法紅外光譜產生的條件
1. 紅外光的頻率與分子中某基團振動頻率一致;2. 分子振動引起瞬間偶極矩變化完全對稱分子,沒有偶極矩變化,輻射不能引起共振,無紅外活性, 如:N2 、 O2 、 等;非對稱分子有偶極矩,屬紅外活性,如 HCl。
近紅外光譜儀的近紅外光譜分析原理
?近紅外光(Near Infrared,NIR)是介于可見光(VIS)和中紅外光(MIR)之間的電磁波, ASTM 定義的近紅外光譜區的波長范圍為 780~2526nm (12820~3959cm1),習慣上又將近紅外區劃分為近紅外短波(780~1100nm)和近紅外長波(1100~2526nm)兩
紅外光譜圖的作用
紅外光譜[1](infraredspectra),以波長或波數為橫坐標?以強度或其他隨波長變化的性質為縱坐標所得到的反映紅外射線與物質相互作用的譜圖。按紅外射線的波長范圍,可粗略地分為近紅外光譜(波段為0.8~2.5微米)、中紅外光譜(2.5~25微米)和遠紅外光譜(25~1000微米)。對物質自發
紅外光譜的樣品制備
第一部分液體液樣的制備是將少量樣品涂于兩片紅外透明的窗片(KBr、NaCl等)之間。窗片的互相擠壓形成一個樣品薄層,樣品的成分決定了選擇哪種窗片。對于無水的樣品,窗片材料是KBr。對于含水樣品, KRS-5 較為適合。固體固體樣品對光譜學家提出挑戰。樣品的熔點為我們指出首先該考慮哪種技術。對于熔點低
紅外光譜儀理論
電磁光譜的紅外部分根據其同可見光譜的關系,可分為近紅外光、中紅外光和遠紅外光。 遠紅外光(大約400-10 cm-1)同微波毗鄰,能量低,可以用于旋轉光譜學。中紅外光(大約4000-400 cm-1)可以用來研究基礎震動和相關的旋轉-震動結構。更高能量的近紅外光(14000-4000 cm-
紅外光譜儀應用
應用于染織工業、環境科學、生物學、材料科學、高分子化學、催化、煤結構研究、石油工業、生物醫學、生物化學、藥學、無機和配位化學基礎研究、半導體材料、日用化工等研究領域。紅外光譜可以研究分子的結構和化學鍵,如力常數的測定和分子對稱性等,利用紅外光譜方法可測定分子的鍵長和鍵角,并由此推測分子的立體構型。根
紅外光譜儀特點
特點編輯1、 只需三個分束器即可覆蓋從紫外到遠紅外的區段;2、 ZL干涉儀,連續動態調整,穩定性極高;3、 可實現LC/FTIR、TGA/FTIR、GC/FTIR等技術聯用;4、 智能附件即插即用,自動識別,儀器參數自動調整;5、 光學臺一體化設計,主部件對針定位,無需調整。
近紅外光譜儀
NIR-900近紅外光譜儀的詳細資料: 商品名稱: NIR-900近紅外光譜儀商品描述 擴展屬性 商品描述:儀器簡介NIR-900近紅外光譜儀是最新引進的美國CONTROL DEVELOPMENT公司的新產品,它采用制冷型高性能銦鎵砷陣列探測器,高性能光纖附件,在幾秒內就可得到全波段光譜,是在線檢測
紅外光譜法概述
19世紀初人們通過實驗證實了紅外光的存在。二十世紀初人們進一步系統地了解了不同官能團具有不同紅外吸收頻率這一事實。1950年以后出現了自動記錄式紅外分光光度計。隨著計算機科學的進步,1970年以后出現了傅立葉變換型紅外光譜儀。紅外測定技術如全反射紅外、顯微紅外、光聲光譜以及色譜-紅外聯用等也不斷發展
紅外光譜的樣品制備
第一部分液體液樣的制備是將少量樣品涂于兩片紅外透明的窗片(KBr、NaCl等)之間。窗片的互相擠壓形成一個樣品薄層,樣品的成分決定了選擇哪種窗片。對于無水的樣品,窗片材料是KBr。對于含水樣品, KRS-5 較為適合。固體固體樣品對光譜學家提出挑戰。樣品的熔點為我們指出首先該考慮哪種技術。對于熔點低
紅外光譜制樣技術
?紅外光譜的樣品制備?–?*部分? 每年各地紅外光譜的實驗室制備和利用紅外光譜儀分析成千上萬個樣品。?這些樣品范圍從商業產品像高聚物顆粒和液體表面活性劑,一直到高純度有機化合物。為了從這些不同的材料中得到高質量的紅外譜圖,我們必須采用多種多樣的制樣技術。這篇文章的旨在與您交流紅外制樣技術。在這篇文