科學家創建世界首例生物節律紊亂體細胞克隆猴模型
自然界中大部分生物都擁有按時間節奏調節自身活動的本領,即“生物節律”。生物節律是生物體內在的時間控制系統,是生物體內多種生理學和生物化學過程波動的基礎。生物節律系統在維持機體內在的生理功能(如睡眠/覺醒系統、體溫、代謝和器官功能等)、適應環境的變化等方面扮演著重要角色。生物節律紊亂與睡眠障礙、神經退行性疾病(如阿爾茨海默病)、精神類疾病(如抑郁癥)、糖尿病、腫瘤、以及心血管等疾病密切相關。 傳統模式的小鼠和果蠅等動物模型因其與人的晝夜活動周期、腦結構和代謝速率等存在明顯差異,極大地制約了生物節律紊亂機理研究和相關疾病治療手段的研發,而非人靈長類動物與人類最接近,是研究節律紊亂相關疾病機理和診治手段比較理想的動物模型,因此建立非人靈長類生物節律紊亂模型迫在眉睫。 中國科學院腦科學與智能技術卓越創新中心(神經科學研究所)和上海腦科學與類腦研究中心研究團隊致力于節律紊亂等相關疾病非人靈長類動物模型的構建,在中科院戰略性先導科技......閱讀全文
基因敲除技術的技術分類
基因敲除分為完全基因敲除和條件型基因敲除(又稱不完全基因敲除)兩種。完全基因敲除是指通過同源重組法完全消除細胞或者動物個體中的靶基因活性,條件型基因敲除是指通過定位重組系統實現特定時間和空間的基因敲除。噬菌體的Cre/LoxP系統、Gin/Gix系統、酵母細胞的FLP/FRT系統和R/RS系統是現階
基因敲除技術的理論來源
基因敲除就是通過同源重組將外源基因定點整合入靶細胞基因組上某一確定的位點,以達到定點修飾改造染色體上某一基因的目的的一種技術。它克服了隨機整合的盲目性和偶然性,是一種理想的修飾、改造生物遺傳物質的方法。這項技術的誕生可以說是分子生物學技術上繼轉基因技術后的又一革命。尤其是條件性、誘導性基因打靶系統的
基因敲除技術的操作步驟
獲得干細胞基因敲除一般應用于鼠,而最常用的鼠的種系是129及其雜合體,因為這類小鼠具有自發突變形成畸胎瘤和畸胎肉瘤的傾向,是基因敲除的理想實驗動物。而其他遺傳背景的胚胎干細胞系逐漸被發展應用,來自于C57BL/6×CBN/JNCrjF1小鼠的胚胎干細胞系成功地用于基因敲除。由于這些遠交系遺傳背景復雜
關于基因敲除技術應用介紹
基因敲除技術主要應用于動物模型的建立,而最成熟的實驗動物是小鼠,對于大型哺乳動物的基因敲除模型還處于探索階段。近年來,牛、羊、豬、猴等大型哺乳動物實現了基因敲除。但由于狗的生殖生理較為特殊,基因敲除狗的培育難度大為增加,狗基因組的定點修飾一直未獲成功。針對這一問題,研究團隊設計了一個自體移植的策略,
基因敲除技術的理論來源
基因敲除就是通過同源重組將外源基因定點整合入靶細胞基因組上某一確定的位點,以達到定點修飾改造染色體上某一基因的目的的一種技術。它克服了隨機整合的盲目性和偶然性,是一種理想的修飾、改造生物遺傳物質的方法。這項技術的誕生可以說是分子生物學技術上繼轉基因技術后的又一革命。尤其是條件性、誘導性基因打靶系統的
基因敲除技術的技術應用
基因敲除技術主要應用于動物模型的建立,而最成熟的實驗動物是小鼠,對于大型哺乳動物的基因敲除模型還處于探索階段。近年來,牛、羊、豬、猴等大型哺乳動物實現了基因敲除。但由于狗的生殖生理較為特殊,基因敲除狗的培育難度大為增加,狗基因組的定點修飾一直未獲成功。針對這一問題,研究團隊設計了一個自體移植的策略,
基因敲除技術的技術分類
基因敲除分為完全基因敲除和條件型基因敲除(又稱不完全基因敲除)兩種。完全基因敲除是指通過同源重組法完全消除細胞或者動物個體中的靶基因活性,條件型基因敲除是指通過定位重組系統實現特定時間和空間的基因敲除。噬菌體的Cre/LoxP系統、Gin/Gix系統、酵母細胞的FLP/FRT系統和R/RS系統是現階
基因敲除技術的理論來源
基因敲除就是通過同源重組將外源基因定點整合入靶細胞基因組上某一確定的位點,以達到定點修飾改造染色體上某一基因的目的的一種技術。它克服了隨機整合的盲目性和偶然性,是一種理想的修飾、改造生物遺傳物質的方法。這項技術的誕生可以說是分子生物學技術上繼轉基因技術后的又一革命。尤其是條件性、誘導性基因打靶系統的
基因敲除技術的技術分類
基因敲除分為完全基因敲除和條件型基因敲除(又稱不完全基因敲除)兩種。完全基因敲除是指通過同源重組法完全消除細胞或者動物個體中的靶基因活性,條件型基因敲除是指通過定位重組系統實現特定時間和空間的基因敲除。噬菌體的Cre/LoxP系統、Gin/Gix系統、酵母細胞的FLP/FRT系統和R/RS系統是現階
基因敲除技術的研究歷史
基因敲除技術是20世紀80年代發展起來的,是建立在基因同源重組技術基礎以及胚胎干細胞技術基礎上的一種新分子生物學技術。所謂胚胎干細胞(EmbryonicStem cell,ES)是從著床前胚胎(孕3—5天)分離出的內細胞團(Inner cellmass,ICM)細胞,它具有向各種組織細胞分化的多分化
基因敲除技術的技術應用
基因敲除技術主要應用于動物模型的建立,而最成熟的實驗動物是小鼠,對于大型哺乳動物的基因敲除模型還處于探索階段。近年來,牛、羊、豬、猴等大型哺乳動物實現了基因敲除。但由于狗的生殖生理較為特殊,基因敲除狗的培育難度大為增加,狗基因組的定點修飾一直未獲成功。針對這一問題,研究團隊設計了一個自體移植的策略,
基因敲除技術的操作步驟
利用基因打靶技術產生轉基因動物的程序一般為:獲得干細胞基因敲除一般應用于鼠,而最常用的鼠的種系是129及其雜合體,因為這類小鼠具有自發突變形成畸胎瘤和畸胎肉瘤的傾向,是基因敲除的理想實驗動物。而其他遺傳背景的胚胎干細胞系逐漸被發展應用,來自于C57BL/6×CBN/JNCrjF1小鼠的胚胎干細胞系成
基因敲除技術的研究歷史
基因敲除技術是20世紀80年代發展起來的,是建立在基因同源重組技術基礎以及胚胎干細胞技術基礎上的一種新分子生物學技術。所謂胚胎干細胞(EmbryonicStem cell,ES)是從著床前胚胎(孕3—5天)分離出的內細胞團(Inner cellmass,ICM)細胞,它具有向各種組織細胞分化的多分化
基因敲除技術的操作步驟
利用基因打靶技術產生轉基因動物的程序一般為:獲得干細胞基因敲除一般應用于鼠,而最常用的鼠的種系是129及其雜合體,因為這類小鼠具有自發突變形成畸胎瘤和畸胎肉瘤的傾向,是基因敲除的理想實驗動物。而其他遺傳背景的胚胎干細胞系逐漸被發展應用,最來自于C57BL/6×CBN/JNCrjF1小鼠的胚胎干細胞系
基因敲除技術的研究歷史
基因敲除技術是20世紀80年代發展起來的,是建立在基因同源重組技術基礎以及胚胎干細胞技術基礎上的一種新分子生物學技術。所謂胚胎干細胞(EmbryonicStem cell,ES)是從著床前胚胎(孕3—5天)分離出的內細胞團(Inner cellmass,ICM)細胞,它具有向各種組織細胞分化的多分化
基因敲除技術原理和方法
1.利用基因同源重組進行基因敲除基因敲除是80年代后半期應用DNA同源重組原理發展起來的。80年代初,胚胎干細胞(ES細胞)分離和體外培養的成功奠定了基因敲除的技術基礎。1985年,首次證實的哺乳動物細胞中同源重組的存在奠定了基因敲除的理論基礎。到1987年,Thompsson首次建立了完整的ES細
TetraOne-KO——基因敲除技術進展
TetraOne KO——基因敲除技術的重大突破 近日,賽業生物科技(Cyagen Biosciences)宣布推出其全球ZL技術TetraOne基因敲除,一種不僅在速度上媲美TALEN、CRISPR/Cas9(把ES打靶基因敲除/敲入鼠的定制周期降低至6個月),而且避免了TALEN、CRISP
如何檢測-crispr-基因敲除成功
CRISPR (clustered, regularly interspaced, short palindromic repeats)是一種來自細菌降解入侵的病毒 DNA 或其他外源 DNA 的免疫機制。在細菌及古細菌中,CRISPR系統共分成3類,其中Ⅰ類和Ⅲ類需要多種CRISPR相關蛋白(Ca
基因敲除的原理與方法
基因敲除可以說是基因組 學、細胞分離培養以及轉基因技術的組合。那么基因敲除的原理是什么呢? 基因敲除的方法有哪些呢?在此,做個小結,以供大家學習。一.概述:基因敲除是自80年代末以來發展起來的一種新型分子 生物學技術,是通過一定的途徑使機體特定的基因失活或缺失的技術。通常意義上的基因敲除主要是應用D
基因敲除技術的技術分類
基因敲除分為完全基因敲除和條件型基因敲除(又稱不完全基因敲除)兩種。完全基因敲除是指通過同源重組法完全消除細胞或者動物個體中的靶基因活性,條件型基因敲除是指通過定位重組系統實現特定時間和空間的基因敲除。噬菌體的Cre/LoxP系統、Gin/Gix系統、酵母細胞的FLP/FRT系統和R/RS系統是現階
Fgf21基因敲除小鼠
背景信息FGF家族成員具有廣泛的促有絲分裂和細胞存活特性,并參與多種生物過程,包括胚胎發育、細胞生長、形態發生、組織修復、腫瘤生長和侵襲。成纖維細胞生長因子21(FGF21)是一種肝細胞因子——即由肝臟分泌的一種激素,通過下丘腦室旁核中的FGF21受體信號傳導調節糖攝入和對甜食的偏好,并與伏隔核內多
生物節律影響免疫系統機制闡明
“遵守時間”對生命體健康來說有多重要?對此,英國《自然·通訊》雜志12日發表了一篇免疫學成果:小鼠研究揭示了生物鐘和一天中的時間會如何影響免疫應答。生物節律與24小時晝夜交替相互作用,深入理解其影響,能幫助制定藥物靶向策略,以緩解自身免疫性疾病。 2017年,諾貝爾生理學或醫學獎頒給了揭秘生物
GDNF的生物學效應GDNF的基因敲除動物模型
gdnf-、gfmα1-或vet-knockout小鼠表現出相同的表型,即腎臟發育不全和胃腸道神經支配缺失,出生后不久全部死亡。gdnf-knockout大鼠中腦DA能神經元無明顯改變,可能有其他NT代償GDNF的作用。腰部脊髓運動神經元僅減少21%,頸上交感神經節中減少23%的神經元,睫狀節神經元
BMAL1敲除對食蟹猴腸道菌群節律性波動影響的機制
晝夜節律紊亂可引發心血管、消化道、神經退行性和腫瘤等多種疾病。腸道微生物與宿主密切互作,其晝夜節律穩態的維持受宿主調控并在宿主營養代謝、發育、免疫和疾病發生等方面發揮重要作用。因此,揭示腸道微生物與宿主的互作機制對于疾病發病機制的解析和疾病治療具有重要意義。目前,針對靈長類動物腸道微生物與宿主
BMAL1敲除對食蟹猴腸道菌群節律性波動影響的機制
晝夜節律紊亂可引發心血管、消化道、神經退行性和腫瘤等疾病。腸道微生物與宿主密切互作,其晝夜節律穩態的維持受宿主調控并在宿主營養代謝、發育、免疫和疾病發生等方面發揮重要作用。因此,揭示腸道微生物與宿主的互作機制對于疾病發病機制的解析和疾病治療具有重要意義。目前,針對靈長類動物腸道微生物與宿主在晝夜
科學家創建世界首例生物節律紊亂體細胞克隆猴模型
自然界中大部分生物都擁有按時間節奏調節自身活動的本領,即“生物節律”。生物節律是生物體內在的時間控制系統,是生物體內多種生理學和生物化學過程波動的基礎。生物節律系統在維持機體內在的生理功能(如睡眠/覺醒系統、體溫、代謝和器官功能等)、適應環境的變化等方面扮演著重要角色。生物節律紊亂與睡眠障礙、神
廣州生物院用TALENs基因敲除技術成功培育免疫缺陷性家兔
中國科學院廣州生物醫藥與健康研究院賴良學博士和裴端卿博士領導的研究團隊將轉錄激活因子樣效應物核酸酶(TALENs)技術應用于兔基因敲除研究,建立了兔基因打靶的高效平臺。并利用該技術平臺成功地將負責T細胞和B細胞重排的重組激活基因(RAG)敲除,建立了世界首例免疫缺陷家兔疾病模型,該成果于7月9日
廣州生物院在熱帶爪蛙中建立了高效基因敲除技術
中國科學院廣州生物醫藥與健康研究院陳永龍博士的研究團隊成功利用CRISPR/Cas9系統在熱帶爪蛙中獲得了高效的靶向基因破壞,該研究成果Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis 于1月8日在線發表在D
廣州生物院利用CRISPR/Cas9技術建立基因敲除克隆豬
中國科學院廣州生物醫藥與健康研究院研究員、吉林大學教授賴良學博士的研究團隊利用最新的CRISPR/Cas9技術成功地培育出兩種基因敲除克隆小型豬,即酪氨酸酶基因敲除豬和PARK2和PINK1雙基因敲除豬,建立了人類白化病和帕金森綜合征兩種豬模型,該研究成果于10月2日在線發表在Cellular
基因敲除的基本功能
基因敲除(knockout)是用含有一定已知序列的DNA片段與受體細胞基因組中序列相同或相近的基因發生同源重組,整合至受體細胞基因組中并得到表達的一種外源DNA導入技術。它是針對某個序列已知但功能未知的序列,改變生物的遺傳基因,令特定的基因功能喪失作用,從而使部分功能被屏蔽,并可進一步對生物體造成影