2015年,通過單粒子冷凍電子顯微鏡(cryo-EM)分析確定剪接體的第一個近原子分辨率結構,報道了來自S. pombe的ILS復合物。從那時起,已經闡明了13種冷凍-EM結構,大部分分辨率在3.3和5.8之間,已經闡明了來自釀酒酵母的組裝剪接體的七種不同狀態,人類剪接體的7種不同狀態的11種這樣的結構。在剪接體的八種已知功能狀態中,僅B *復合物在結構上保持未表征。 2019年3月14日,施一公研究組在Cell在線發表題為“Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching”的研究論文,該研究得到了釀酒酵母的兩種不同前mRNA上組裝了B *復合物,并確定了四種不同B *復合物的冷凍EM結構,總分辨率為2.9-3.8?。 U2核小RNA(snRNA)和分支點序列(BPS)之間的雙鏈離散地......閱讀全文
本文整理自儀器信息網,中國教育報,大河網 導讀 11月18日下午,2016年度清華大學研究生特等獎學金評選結果正式公示,共有來自于9個院系的7名博士生與3名碩士生最終獲此殊榮。其中,生命科學與醫學領域唯一的獲獎者,是師從施一公教授的博士生萬蕊雪。 11月18日下午,2016年度清華大學研究
施一公 該校的施一公院士、顏寧教授是這一領域的知名科學家。最近,兩位學者都有新成果發表在CNS上。7月22日,施一公教授研究組在Science雜志就剪接體的結構與機理研究發表兩篇長文,題目分別為“Structure of a Yeast Activated Spliceosome at 3.5
施一公的實驗室施一公和他的研究團隊在實驗室 核心提示丨“這張幻燈片是最簡單的,也是最難得的。”在昨天上午的施一公研究組剪接體的三維結構RNA剪接的分子結構基礎重大成果發布會上,清華大學生命科學學院院長、生命科學與醫學研究院院長施一公打開一張照片,如是說。 這個誕生了世界級頂尖成果的實驗室,究竟有
真核生物pre-mRNA剪接由超分子復合物剪接體(spliceosome)完成。完整的剪接過程主要分為八種不同的狀態,預催化剪接體的前體(pre-B),預催化剪接體(B),活化復合物(Bact),催化活化復合物(B*),催化步驟I復合物 (C),催化步驟II活化復合物(C*),催化后剪接體(P)
日前,清華大學生命科學學院施一公研究組就剪接體的組裝機理與結構研究于《科學》期刊發表題為《完全組裝的釀酒酵母剪接體激活前結構》的論文,報道了釀酒酵母剪接體處于被激活前階段的兩個完全組裝的關鍵構象——預催化剪接體前體和預催化剪接體。 這兩個高分辨率三維結構首次展示了在剪接體組裝過程中剪接位點和分支點
2016年1月8日,清華大學生命學院施一公教授研究組在《科學》(Science)就剪接體的結構與機理研究再發長文(Research Article),題為《U4/U6.U5 三小核核糖核蛋白復合物3.8埃的結構:對剪接體組裝及催化的理解》(The 3.8 A Structure of the U
Ca2+/鈣調蛋白依賴的蛋白磷酸酶calcineurin(CN),是由一個催化亞基A和一個調控亞基B組成的異源二聚體。CN在多種細胞過程中起到了關鍵功能,比如心肌肥厚和T細胞激活。不過CNA調控區域的大部分結構還有待確定,CN活性的調控機制也存在相當大的爭議。 清華大學的研究團隊日前獲得了全長
本文轉自新華社(記者:孫琪 鹿永建),原標題:施一公的第二個“黃金十年”。 身材高挑瘦削,行色匆匆,記者在教學樓一層咖啡廳偶遇施一公。他剛出差回來,喝杯咖啡稍作休息,準備下一場活動。“給我打電話吧,”他低頭一看表,邊說著“我要去開會了”,邊在樓梯上一路小跑。 出差、做實驗、輔導學生、開會,施
摘要 蛋白質組學是在后基因組時代出現的一個新興的研究領域, 它的主要任務是識別鑒定細胞、組織或機體的全部蛋白質, 并分析蛋白質的功能及其模式。 因此, 揭示蛋白質組中蛋白質間的相互作用關系也是蛋白質組學的重要內容之一。 酵母雙雜交技術是用來檢測蛋白質間是否相互作用的一
作為后基因組時代出現的新興研究領域之一, 蛋白質組學(proteomics)正受到越來越多的關注。 蛋白質組學的研究目標是對機體或細胞的所有蛋白質進行鑒定和結構功能分析。 蛋白質組學的研究不局限任何特定的方法。 高分辨率的蛋白質分離技術如二維凝膠電泳和高效液相
作為后基因組時代出現的新興研究領域之一, 蛋白質組學(proteomics)正受到越來越多的關注。 蛋白質組學的研究目標是對機體或細胞的所有蛋白質進行鑒定和結構功能分析。 蛋白質組學的研究不局限任何特定的方法。 高分辨率的蛋白質分離技術如二維凝膠電泳和高效液相層析, 經典的蛋白質鑒定方法如氨
在RNA分子中鑒定出超過150種RNA修飾。轉錄組分析是解碼這些化學修飾的潛在功能的關鍵步驟之一。N7-甲基鳥苷(m7G)是tRNA,rRNA和mRNA 5'cap中存在的最豐富的修飾之一,并且在調節RNA加工,代謝和功能中具有關鍵作用。除了其在mRNA中的帽位置外,還在內部mRNA區域
2015年12月15日,由教育部科學技術委員會組織評選的2015年度“中國高等學校十大科技進展”經過形式審查、學部初評、項目終審評選專項工作和項目公示等流程后在京揭曉。 “中國高等學校十大科技進展”的評選自1998年開展以來,至今已18屆,這項評選活動對提升高等學校科技的整體水平、增強高校的科
前接體是真核細胞核內剪接 mRNA 前體的大分子核糖核蛋白復合體,它由 5 種 snRNP 和大量的非 snRNP 蛋白組成,每一種 snRNP 由一個 snRNA 和幾種蛋白質構成。本實驗來源「RNA 實驗指導手冊」主編:鄭曉飛。實驗方法原理前接體是真核細胞核內剪接 mRNA 前體的大分子核糖核蛋
實驗方法原理 前接體是真核細胞核內剪接 mRNA 前體的大分子核糖核蛋白復合體,它由 5 種 snRNP 和大量的非 snRNP 蛋白組成,每一種 snRNP 由一個 snRNA 和
9月9日下午,有“中國版諾貝爾獎”之稱的第二屆“未來科學大獎”在北京揭曉。清華大學教授、結構生物學家施一公,中國科學技術大學教授、量子通信衛星“墨子號”首席科學家潘建偉,北京大學國際數學研究中心教授許晨陽分別獲得“生命科學獎”、“物質科學獎”和“數學與計算機科學獎”,獎金各為100萬美元。 百
生物通報道:阿爾茨海默氏病(AD)是最常見的癡呆癥形式,但是我們對AD的病因仍然知之甚少。最近,來自清華大學的研究人員,采用高度純化的重組γ-分泌酶,檢測了128個AD來源的早老素蛋白-1(PS1)突變對β淀粉樣蛋白(Aβ42和Aβ40)產量的影響,相關研究結果發布在12月5日的《美國國家科學院
杭婧,清華大學醫學院2012級直博生,師從施一公教授,研究方向是剪接體領域的結構生物學研究。她共發表SCI論文4篇,以第一作者身份在《自然》上發表文章一篇,在《科學》上發表文章兩篇,影響因子累積破百。 2015年9月11日,兩篇闡釋生命大分子剪接體結構的文章以雜志當期封面的形式,“背靠背”發表
來自麻省大學醫學院的研究人員全面分析了一種對于真核細胞轉錄剪接十分重要的復合物:外顯子拼接復合體(exon junction complex,EJC),并研究了相關RNA互助組,從中發現EJC的作用機制,這對于深入解析轉錄后剪接具有重要意義。相關成果公布在Cell雜志在線版上。 文章的
西湖大學生命科學學院施一公教授研究組題為《ATP水解酶/解旋酶Prp2及其激活因子Spp2催化剪接體激活過程中結構重塑的分子機理》的論文,11月27日在《科學》雜志以長文形式發表。此文報道了釀酒酵母處于激活狀態的剪接體2.5埃的高分辨率電鏡結構,該結構是目前報道的最高分辨率
鈷/氧化鈷雜化二維超薄結構電催化還原CO2為液體燃料01 1、研制出將二氧化碳高效清潔轉化為液體燃料的新型鈷基電催化劑 將二氧化碳在常溫常壓下電還原為碳氫燃料,是一種潛在的替代化石原料的清潔能源策略,并有助于降低二氧化碳排放對氣候造成的不利影響。實現二氧化碳電催化還原的關鍵瓶頸問題是將二氧化
北京時間2021年1月29日,西湖大學教授施一公研究組在《科學》發文,首次報道了“神秘”的次要剪接體的高分辨率三維結構。 這也標志著該團隊在一個新的研究方向上邁出關鍵一步。 生物體的遺傳信息經過“轉錄”從DNA傳遞給RNA,再經過“翻譯”從RNA傳遞給蛋白質,這就是分子生物學的“中心法則”。
原核生物基因表達的調控主要在轉錄水平上進行,而真核生物由于RNA較為穩定,所以除了存在轉錄水平的調控以外,在翻譯水平上也進行各種形式的調控。在蛋白質生物合成的起始反應中主要涉及到細胞中的四種裝置,這就是:1.核糖體,它是蛋白質生物合成的場所;2.蛋白質合成的模板mRNA它是傳遞基因信息的媒介;3.可
2.包涵體的分離與純化細胞破碎時提取細胞內產物的關鍵。對于細菌的裂解常用的有酶溶法、超聲破碎法、化學滲透法、玻璃珠研磨等。包涵體可通過超聲波、勻漿等常規的方法是菌體破碎后,離心就可得到。密度梯度離心后可得到高純度的包涵體。包涵體一般不溶于水,為了獲得可溶性的蛋白質可加入強蛋白質變性劑后使其溶解。一般
2月3日,國際學術期刊Molecular Cell 在線發表了中國科學院分子細胞科學卓越創新中心/生物化學與細胞生物學研究所劉默芳研究組的最新研究成果“LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Sperm
剪接體(Spliceosomes)是由RNA和蛋白分子組成,大小為60S的多組分復合物,這種機器能進行Pre-mRNA剪接,即把內含子去除并把外顯子序列連接成為成熟的mRNA,這是基因表達與調控的重要環節之一。從作用機制上來看,剪接體作為動態分子機器,需要由亞基從頭逐步組裝組合,來完成每個剪接事
剪接體(Spliceosomes)是由RNA和蛋白分子組成,大小為60S的多組分復合物,這種機器能進行Pre-mRNA剪接,即把內含子去除并把外顯子序列連接成為成熟的mRNA,這是基因表達與調控的重要環節之一。從作用機制上來看,剪接體作為動態分子機器,需要由亞基從頭逐步組裝組合,來完成每個剪接事
2015年9月19日,在位于安徽合肥的中國科技大學,一場科技獎的頒獎儀式正在舉行。在場的有包括楊振寧在內的不少科技界的大腕。當天,施一公作為嘉賓應邀到場,他一直坐在觀眾席上,并不是這次活動的主角。然而活動一結束,他瞬間被潮水般的人群包圍,年輕的學子們一臉興奮地排隊等待與他照相、索要簽名。施一公
前體信使RNA的剪接涉及內含子的去除和外顯子的連接,是由剪接體介導的。加上過去40年的生化和遺傳學研究,自2015年以來,對完整的剪接體進行了原子分辨率的結構研究,導致了對RNA剪接的機械描述,并有了顯著的洞察力。剪接體被證明是一種由蛋白質組成的金屬蛋白酶.小核RNA(SnRNA)的保守元件與兩
看看任何一個真核細胞基因組內的蛋白編碼基因,不管是動物,植物,真菌還是原生生物,我們都會發現由于內含子的存在,編碼基因被隔斷成幾個片段。當一個基因發生轉錄,這些內含子會在蛋白質合成之前從mRNA前體中被移除,雖然關于這些內含子的移除過程已經得到了幾十年的深入研究,但是在一些三維動態結構研究技術出