X射線顯微鏡的概念
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出發的。宏觀成像與微觀成像有相通之處,如襯度原理、設備的主要組成部件等,但也有區別。由于X 射線顯微鏡是用來觀察肉眼無法分辨的微觀結構與圖形,因而在儀器結構和要求上有顯著不同,如要求光源尺寸小而強度大,要將像放大和高分辨等 。......閱讀全文
X射線晶體學的多重同晶置換(MIR)概念
把對X射線散射能力大的重金屬原子作為標識原子。這種置換入重原子的大分子應與無重原子時的原晶體有相同的晶胞參數和空間群,且絕大多數原子的位置相同,故稱同晶置換。從這些含重原子晶體的衍射數據,利用基于派特遜法的方法可解出重原子的位置,據此算出其結構因子和相角,進而利用相角關系計算出沒有重原子的原晶體的相
X射線顯微鏡的聚焦放大元件的介紹
常用的聚焦鏡是多層膜反射聚焦鏡和波帶片,成像放大元件是波帶片。 1、多層膜反射聚焦鏡 多層膜是在基板上重復涂上兩種不同的材料制成的人造一維晶體。通常,一種材料是高原子序數的重金屬(H),另一種是低原子序數的非金屬(L)。這兩個層的厚度之和dH + dL構成這多層膜的重復周期d。dH 和dL
X射線機重過濾X射線能譜的測量
本文報道了用 NaI(Tl)閃爍譜儀對國產 F34-Ⅰ型 X 射線機的重過濾 X 射線能譜的測量和解譜方法,給出一組測量結果,并對測量結果進行了比較和討論。
高頻X射線機和工頻X射線機的區別
高頻機與工頻機的不同 高頻機是指高壓發生器的工作頻率大于20kHz的X線機,工頻機是指高壓發生器的工作頻率小于400Hz的X線機。工頻機將50Hz的工頻電源升高壓整流后有100Hz的正弦紋波,經濾波后仍有10%以上的紋波,高頻機工作頻率高,高壓整流后的電壓基本上是恒定的直流,紋波可小于0.1%
X射線的介紹
X射線(X-ray,倫琴射線)是由于原子中的電子在能量相差懸殊的兩個能級之間的躍遷而產生的粒子流,是一種電磁波,由德國物理學家W.K.倫琴于1895年發現[1]。 X射線具有很高的穿透性,被用于醫學成像診斷。2017年10月27日,世界衛生組織國際癌癥研究機構將X射線放置在致癌物清單中。
X射線的原理
產生X射線的最簡單方法是用加速后的電子撞擊金屬靶。撞擊過程中,電子突然減速,其損失的動能(其中的1%)會以光子形式放出,形成X光光譜的連續部分,稱之為制動輻射。通過加大加速電壓,電子攜帶的能量增大,則有可能將金屬原子的內層電子撞出。于是內層形成空穴,外層電子躍遷回內層填補空穴,同時放出波長在0.
X射線的產生
X射線的產生?在X射線方面,情況完全不同:越高的加速電壓越有利于X射線的產生。X射線可以由能譜儀(EDS)捕獲和處理,從而對樣品的成分進行分析。?入射電子束中的電子與樣品中的原子相互作用,迫使目標樣品中的電子被打出。這樣樣品中就會有空穴生成,它由一個來自于同一原子的外層能量較高電子填充。這個過程要求
X射線的防護
1)在不影響診療效果的前提下,工作人員和病人所受的放射量盡可能保持最低量,可通過縮短照射時間、增加距離和利用輻射屏蔽來實現[10]。 2)劑量限制:被照射的工作人員必須進行劑量檢測。計量儀可精確顯示工作人員接觸的放射量,并每月檢查計量儀記錄值,特別應注意沒有絕對安全的照射劑量。 3)美國、日
X射線的產生
電子的韌制輻射,用高能電子轟擊金屬,電子在打進金屬的過程中急劇減速,按照電磁學,有加速的帶電粒子會輻射電磁波,如果電子能量很大,比如上萬電子伏,就可以產生x射線,這是目前實驗室和工廠,醫院等地方用的產生x射線的方法。 原子的內層電子躍遷也可以產生x射線,量子力學的理論,電子從高能級往低能級躍遷
X射線的特性
X射線是一種波長極短,能量很大的電磁波,X射線的波長比可見光的波長更短(約在0.001~100納米,醫學上應用的X射線波長約在0.001~0.1納米之間),它的光子能量比可見光的光子能量大幾萬至幾十萬倍。[5] 物理特性 1、穿透作用。X射線因其波長短,能量大,照在物質上時,僅一部分被物質所
X射線的應用
X射線診斷X射線應用于醫學診斷,主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由于X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那么通過人體后的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息。這樣在熒光屏上或攝影膠片上引起的熒光作用或感光作用的強弱就有
X射線的應用
X射線診斷 X射線應用于醫學診斷[6],主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由于X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那么通過人體后的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息,在熒光屏上或攝影膠片上引起的熒光作用或感光作用
X射線與γ射線的相關介紹
X射線是帶電粒子與物質交互作用產生的高能光量子。 X射線與γ射線有許多類似的特性,但它們起源不同。 X射線由原子外部引起,而γ射線由原子內部引起。X射線比γ射線能量低,因此穿透力小于γ射線。成千上萬臺X射線機在日常中被運用于醫學和工業上。X射線也被用于癌癥治療中破壞癌變細胞,由于它的廣泛運用
X射線治療
X射線應用于治療[7],主要依據其生物效應,應用不同能量的X射線對人體病灶部分的細胞組織進行照射時,即可使被照射的細胞組織受到破壞或抑制,從而達到對某些疾病,特別是腫瘤的治療目的。
X射線診斷
X射線應用于醫學診斷[6],主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由于X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那么通過人體后的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息,在熒光屏上或攝影膠片上引起的熒光作用或感光作用的強弱就有較大
X-射線激光
X 射線激光指的是 XFEL (x-ray free-electron laser),X 射線自由電子激光。而這種激光,是將自由電子激光技術(FEL)產生的激光,拓展到 X 射線范圍內而產生的一種 X 射線激光。這種激光的強度可達傳統方法產生的激光亮度的十億倍,因此可讓較小晶體產生出足夠強的衍射圖樣
X射線散射
美國物理學家康普頓(Arthur Holy Compton,1892~1962)在大學生時期就跟隨其兄卡爾·康普頓開始X射線的研究。后來他到了卡文迪什實驗室,主要從事g射線的實驗研究。他用精湛的實驗技術精確測定了γ射線的波長,并確定γ射線在散射后波長會變得更長。但他沒能從理論上解釋這個實驗事實。他到
X射線原理
X射線定義X射線是由于原子中的電子在能量相差懸殊的兩個能級之間的躍遷而產生的粒子流,是波長介于紫外線和γ射線之間的電磁波。其波長很短約介于0.01~100埃之間。X射線具有很高的穿透本領,能透過許多對可見光不透明的物質,如墨紙、木料等。這種肉眼看不見的射線可以使很多固體材料發生可見的熒光,使照相底片
X射線光譜
1914年,英國物理學家莫塞萊(Henry Moseley,1887-1915)用布拉格X射線光譜儀研究不同元素的X射線,取得了重大成果。莫塞萊發現,以不同元素作為產生X射線的靶時,所產生的特征X射線的波長不同。他把各種元素按所產生的特征X射線的波長排列后,發現其次序與元素周期表中的次序一致,他稱這
x射線衍射儀和x射線機有什么不同
X射線衍射儀和X射線機有什么不同我覺得X射線機是用來照射X光線X射線衍射線一他是用來衍射的他倆不同
什么是連續X射線和特征X射線譜
連續X射線,是電子跑著跑著突然被原子核拉住,能量沒地兒放,于是放出X射線,這里放出的能量是連續的。特征X射線是處于特定能級的電子吸收光子,處于激發態,跑到低能級上放出的能量,故是一份一份的,具有明顯衍射峰。介紹陰極射線的電子流轟擊到靶面,如果能量足夠高,靶內一些原子的內層電子會被轟出,使原子處于能級
X射線晶體學的多波長反常散射(MAD)概念
晶體衍射中有一條弗里德耳定律, 就是說不論晶體中是否存在對稱中心,在晶體衍射中總存在著對稱中心,也即有FHKL=FHKL。但是當使用的X射線波長與待測樣品中某一元素的吸收邊靠近時,就不遵從上述定律,也即FHKL≠FHKL。這是由電子的反常散射造成的, 利用這一現象可以解決待測物的相角問題。?一般,
X射線熒光光譜儀X射線吸收的介紹
當X射線穿過物質時,一方面受散射作用偏離原來的傳播方向,另一方面還會經受光電吸收。光電吸收效應會產生X射線熒光和俄歇吸收,散射則包含了彈性和非彈性散射作用過程。 當一單色X射線穿過均勻物體時,其初始強度將由I0衰減至出射強度Ix,X射線的衰減符合指數衰減定律: 式中,μ為質量衰減系數;ρ為樣
X射線熒光光譜儀X射線的衍射介紹
相干散射與干涉現象相互作用的結果可產生X射線的衍射。X射線衍射與晶格排列密切相關,可用于研究物質的結構。 其中一種用已知波長λ的X射線來照射晶體樣品,測量衍射線的角度與強度,從而推斷樣品的結構,這就是X射線衍射結構分析(XRD)。 另一種是讓樣品中發射出來的特征X射線照射晶面間距d已知的晶體
X射線熒光光譜儀X射線散射的介紹
除光電吸收外,入射光子還可與原子碰撞,在各個方向上發生散射。散射作用分為兩種,即相干散射和非相干散射。 相干散射:當X射線照射到樣品上時,X射線便與樣品中的原子相互作用,帶電的電子和原子核就跟隨著X射線電磁波的周期變化的電磁場而振動。因原子核的質量比電子大得多,原子核的振動可忽略不計,主要是原
概述X射線熒光光譜儀X射線的產生
根據經典電磁理論,運動的帶電粒子的運動速度發生改變時會向外輻射電磁波。實驗室中常用的X射線源便是利用這一原理產生的:利用被高壓加速的電子轟擊金屬靶,電子被金屬靶所減速,便向外輻射X射線。這些X射線中既包含了連續譜線,也包括了特征譜線。 1、連續譜線 連續光譜是由高能的帶電粒子撞擊金屬靶面時受
淺析射線儀通過X射線/γ射線的探傷原理
射線儀檢測是利用X射線的穿透能力,在工業上一般用于檢測一些眼睛所看不到的物品內部傷斷,或電路的短路等。 γ射線有很強的穿透性,射線儀探傷就是利用γ射線得穿透性和直線性來探傷的方法。γ射線雖然不會像可見光那樣憑肉眼就能直接察知,但它可使照相底片感光,也可用特殊的接收器來接收。
簡述x射線測厚儀射線管的更換
射線管損壞或使用一定年限老化后 ,測厚儀廠家通常建議將射線源返廠更換射線管 ,費用很高 ,周期也較長。實際上 ,只要細心操作 ,完全可以現場更換射線管。更換射線管應著重注意 : 1)緊固射線管的安裝螺絲時用力要適度 ,既要安裝牢固 ,更要防止緊固過度導致管子破裂。 2)高壓線的焊接要求較高
用于電子顯微鏡中的X射線能譜儀
本文扼要介紹了目前國內外用于電子顯微鏡中的X射線能譜儀的發展概況、應用情況以及達到的測量水平,并分別敘述了硬件和軟件兩方面現狀、水平及近期改進的展望。?CAJ下載PDF下
X射線CT顯微鏡用于風機葉片的結構缺陷研究
毫無疑問,風是一種潛能巨大的新能源,在數秒鐘內就能發出一千萬馬力(750萬千瓦)的功率。風很早就被人類利用,比如用風車來抽水、磨面等,而現在風能主要被用作風力發電,通過風力帶動風機葉片旋轉,再透過增速機將旋轉的速度提升,來促使發電機發電。由于風力發電非常環保,無需使用任何燃料,也不會產生輻射或空