鋰電負極材料納米碳管的簡介
納米碳管是近年來發現的一種新型碳晶體材料,它是一種直徑幾納米至幾十納米,長度為幾十納米至幾十微米的中空管,其性能如下: 納米管的制備有直流電弧法和催化熱解法。 催化熱法是將20%H2+80%CH4混合氣體在Ni+Al2O3的催化劑顆粒上于500℃熱解,將熱解的樣品研磨后,加入熱硝酸(80℃)浸泡48h以除去碳管中的催化劑,用水反復洗滌過濾,直至洗滌液的PH=6,過濾后的樣品于160℃烘干。 直流電弧法是以高純石墨棒為電極,在氬氣保護下,在密閉電弧爐中,通過打電弧,所得產物為含有C60系列產品的納米碳管。通過化學氧化法可分離出納米碳管。......閱讀全文
鋰電材料納米氧化鋅的簡介
納米氧化鋅(ZnO),白色六方晶系結晶或球形粒子,粒徑小于100nm,平均粒徑50nm,比表面積大于4m2 /g。具有極高的化學活性及優異的催化性和光催化活性,并具有抗紅外線、紫外線輻射及殺菌功能。流動性好。 用作催化材料、光化學用半導體材料,可以催化光解有機物分子。10~25nm的ZnO可用
鋰電材料納米氧化鋁的簡介
納米氧化鋁是一種無機物,化學式為Al2O3,白色晶狀粉末,有α、β、γ、δ、η、θ、κ和χ等十一種晶體。 中文名:納米氧化鋁 英文名:Aluminium oxide,nanometer 別名:納米三氧化二鋁 CAS RN.:1344-28-1 分子式:Al2O3 分子量:101.96
鋰電非碳負極材料氮化物體系屬的相關介紹
氮化物體系屬反螢石(CaF2)或Li3N結構的化合物,具有良好的離子導電性,電極電位接近金屬鋰,可用作鋰離子電極的負極。 反螢石結構的Li-M-N(M為過渡金屬)化合物如Li7MnN4和Li3FeN2可用陶瓷法合成。即將過渡金屬氧化物和鋰氮化物(MxNx+Li3N)在1%H2+99%N2氣氛中
硅納米負極是什么材料
研究人員發現硅納米作為負極理論容量可以達到4200,而目前的石墨負極材料理論也就372,行內很多廠家想用納米硅作為負極材料,問題是硅充電時體積膨脹好幾倍,有出現粉化現象,基本證明納米硅不能單獨作為負極材料,現在比較流行的是硅碳復合材料,緩解硅的膨脹,我們咸陽六元碳晶公司也是初入此行,也想研究開發硅碳
鋰電池負極材料的分類
負極材料:多采用石墨。新的研究發現鈦酸鹽可能是更好的材料。負極反應:放電時鋰離子脫嵌,充電時鋰離子嵌入。?充電時:xLi+ + xe- + 6C → LixC6放電時:LixC6 → xLi+ + xe- + 6C
鋰電快充負極材料的研究
研究背景隨著國家雙碳政策的推出以及鋰電技術的快速發展,以鋰離子電池(LIB)為動力的電動汽車(EV)和插電式混合動力汽車(PHEV)等備受關注,并呈現爆發式增長的趨勢。下圖是2012-2021年全球電動汽車銷量及發展趨勢圖片來源:Advanced Functional Materials盡管在續航里
鋰電池的負極材料分類
負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)兩條路線;非碳系材料可細分為鈦基材料、硅基材料、錫基材料、氮化物和金屬鋰等。
鋰電池的負極材料研究
一般而言,鋰電池負極材料由活性物質、粘結劑和添加劑制成糊狀膠合劑后,涂抹在銅箔兩側,經過干燥、滾壓制得,作用是儲存和釋放能量,主要影響鋰電池的循環性能等指標。負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)
鋰電池負極材料的研究
作為鋰二次電池的負極材料,首先是金屬鋰,隨后才是合金。但是,它們無法解決鋰離子電池的安全性能,這才誕生了以碳材料為負極的鋰離子電池。 聚合物鋰離子電池的負極材料與鋰離子電池基本上相同。從前面講過聚合物鋰離子電池的發展過程可以看出,自鋰離子電池的商品化以來,研究的負極材料有以下幾種:石墨化碳材料、無
鋰電池負極材料的研究
作為鋰二次電池的負極材料,首先是金屬鋰,隨后才是合金。但是,它們無法解決鋰離子電池的安全性能,這才誕生了以碳材料為負極的鋰離子電池。 聚合物鋰離子電池的負極材料與鋰離子電池基本上相同。從前面講過聚合物鋰離子電池的發展過程可以看出,自鋰離子電池的商品化以來,研究的負極材料有以下幾種:石墨化碳材料、無
鋰電池負極材料的分類
分碳材料和非碳材料兩類。人造石墨和天然石墨是當前最主流的兩大高純石墨類碳材料負級,復合型高純石墨與中間相碳納米粒子通過摻 雜改性材料和化學物質解決生產加工做成。非碳材料包含硅基、鈦基、錫基、氮化合物和金屬鋰,這種新 型負級至今仍處產品研發或較小規模生產制造環節,并未完成商業化的。
鋰電池負極材料石墨的浮選法提純簡介
浮選是一種常用而重要的選礦方法,石墨具有良好的天然可浮性,基本上所有的石墨都可以通過浮選的方法進行提純,為保護石墨的鱗片,石墨浮選大多采用多段流程。石墨浮選捕收劑一般選用煤油,用量為100~200g/t,起泡劑一般采用松醇油或丁醚油,用量為50~250g/t。 大鱗片石墨的價值及應用均比細鱗片
關于鋰電材料納米氧化鐵的簡介
納米氧化鐵具有獨特的光學、磁學、熱學、催化等性質,廣泛應用于磁性材料、顏料、精細陶瓷以及塑料制品的制備和催化劑工業中,在聲學、電子學、光學、熱學,尤其是醫學和生物工程等方面也有廣泛的應用價值和前景。同時,它還是一種新型傳感器材料,不需要摻雜貴金屬就可用于檢測空氣中的可燃性氣體和有毒性氣體,具有氣
鋰電快充負極材料全面解讀
研究背景隨著國家雙碳政策的推出以及鋰電技術的快速發展,以鋰離子電池(LIB)為動力的電動汽車(EV)和插電式混合動力汽車(PHEV)等備受關注,并呈現爆發式增長的趨勢。下圖是2012-2021年全球電動汽車銷量及發展趨勢圖片來源:Advanced Functional Materials盡管在續航里
關于鋰電池的材料碳納米管的介紹
碳納米管是一種石墨化結構的碳材料,自身具有優良的導電性能,同時由于其脫嵌鋰時深度小、行程短,作為負極材料在大倍率充放電時極化作用較小,可提高電池的大倍率充放電性能。 缺點:碳納米管直接作為鋰電池負極材料時,會存在不可逆容量高、電壓滯后及放電平臺不明顯等問題。如Ng等采用簡單的過濾制備了單壁碳納
常見的鋰電池負極材料介紹
1、碳負極材料此種類型的材料無論是能量密度、循環能力,還是成本投入等方面,其都處于表現均衡的負極材料,同時也是促進鋰離子電池誕生的主要材料,碳材料可以被劃分為兩大類別,即石墨化碳材料以及硬碳。其中,前者主要包括人造石墨以及天然石墨。2、天然石墨天然石墨也具有諸多優勢,其結晶度較高、可嵌入的位置較多,
鋰電池的負極材料有哪些?
鋰電池負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)兩條路線。石墨烯負極材料又可進一步分為天然石墨、人造石墨、復合石墨和中間相碳微球。其中,天然石墨負極材料的上游為天然石墨礦石,人造石墨負極材料的上游包括
AFM納米碳管探針
納米碳管探針??? 由于探針針尖的尖銳程度決定影像的分辨率,愈細的針尖相對可得到更高的分辨率,因此具有納米尺寸碳管探針,是目前探針材料明日之星。納米碳管(carbon nanotube)是由許多五碳環及六碳環所構成的空心圓柱體,因為納米碳管具有優異的電性、彈性與軔度, 很適合作為原子力顯微鏡的探針針
關于鋰電池負極材料鎳元素的毒理學簡介
金屬鎳幾乎沒有急性毒性,一般的鎳鹽毒性也較低,但羰基鎳卻能產生很強的毒性。羰基鎳以蒸氣形式迅速由呼吸道吸收,也能由皮膚少量吸收,前者是作業環境中毒物侵入人體的主要途徑。羰基鎳在濃度為3.5μg/m3時就會使人感到有如燈煙的臭味,低濃度時人有不適感覺。吸收羰基鎳后可引起急性中毒,10分鐘左右就會出
鋰電池負極材料石墨的提純法氫氟酸法簡介
氫氟酸是強酸,幾乎可以與石墨中的任何雜質發生反應,而石墨具有良好的耐酸性,特別是可以耐氫氟酸,決定了石墨可以用氫氟酸進行提純。氫氟酸法的主要流程為石墨和氫氟酸混合,氫氟酸和雜質反應一段時間產生可溶性物質或揮發物,經洗滌去除雜質,脫水烘干后得到提純石墨。 氫氟酸與Ca、Mg、Fe等金屬氧化物反應
鋰電池負極材料石墨的堿酸法提純簡介
堿酸法包括兩個反應過程:堿熔過程和酸浸過程。堿熔過程是在高溫條件下,利用熔融狀態下的堿和石墨中酸性雜質發生化學反應,特別是含硅的雜質(如硅酸鹽、硅鋁酸鹽、石英等),生成可溶性鹽,再經洗滌去除雜質,使石墨純度得以提高。酸浸過程的基本原理是利用酸和金屬氧化物雜質反應,這部分雜質在堿熔過程中沒有和堿發
鋰離子電池正負極材料加VGCF碳管的原因分析
1、不管正或負極活性材都會有膨脹收縮的問題,一般負極碳材有20%膨脹收縮率,而像LFP正極材料有6%膨脹收收率。當多次充放電中,其正、負活性材顆粒與顆粒之間接觸少、間隙加大,甚至有些脫離集電極,導致電子與離子傳輸路徑斷續不連續相,成為死的活性材,不再參與電極反應。因此循環使用壽命下降。VGCF碳
鋰電池的負極材料的分類介紹
鋰電池負極材料按照所用活性物質,可分為碳材和非碳材兩大類:碳系材料包括石墨材料(天然石墨、人造石墨以及中間相碳位球)與其它碳系(硬碳、軟碳和石墨烯)兩條路線。石墨烯負極材料又可進一步分為天然石墨、人造石墨、復合石墨和中間相碳微球。其中,天然石墨負極材料的上游為天然石墨礦石,人造石墨負極材料的上游包括
鋰電池材料構成主要有哪些?鋰電池主要材料簡單介紹
鋰電池是一類由鋰金屬或鋰合金為正/負極材料、使用非水電解質溶液的電池。由于鋰金屬的化學特性非常活潑,使得鋰金屬的加工、保存、使用,對環境要求非常高。隨著科學技術的發展,鋰電池已經成為了主流。一、鋰電池材料構成主要有哪些碳負極材料:實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、
有了這個方法,硅納米線鋰電負極材料將不再是困難
近日,中國科學院過程工程研究所在熱等離子體制備硅納米線負極材料上取得新進展,實現每小時公斤級量產,且制備的電池容量和壽命都達到較高標準,與碳材料復合后循環1000次的容量仍有2000mAh/g,為硅碳負極材料的產業化進展提供了新思路。相關研究結果發表在ACS Nano上。 目前傳統的石墨負極材
鋰電池錫基負極材料介紹
錫基負極材料:錫基負極材料可分為錫的氧化物和錫基復合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。沒有商業化產品。
鋰電池負極材料大體分類介紹
第一種是碳負極材料: 目前已經實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、中間相碳微球、石油焦、碳纖維、熱解樹脂碳等。 第二種是錫基負極材料: 錫基負極材料可分為錫的氧化物和錫基復合氧化物兩種。氧化物是指各種價態金屬錫的氧化物。目前沒有商業化產品。 第三種是含鋰
鋰電池負極材料大體分為幾種
鋰電池負極材料大概分為六種:碳負極材料、合金類負極材料、錫基負極材料、含鋰過渡金屬氮化物負極材料、納米級材料、納米負極材料。第一種是碳納米級材料負極材料:目前已經實際用于鋰離子電池的負極材料基本上都是碳素材料,如人工石墨、天然石墨、中間相碳微球、石油焦、碳纖維、熱解樹脂碳等。第二種是合金類負極材料:
多孔碳負極材料可有效儲鉀
從河北科技大學獲悉,該校經濟管理學院材料學院王波教授帶領的科研團隊與北京航空航天大學王偉教授、劍橋大學郗凱博士等在鉀離子電池多孔碳負極材料領域合作取得重要進展,相關研究近日在英國皇家化學學會RSC出版社旗下《材料化學學報》 上發表。圖片來源于網絡 鉀離子電池因儲量豐富、價格低廉且具有較低的氧化
鋰電池的負極材料石墨之隱晶質石墨簡介
隱晶質石墨又稱微晶石墨或土狀石墨,這種石墨的晶體直徑一般小于1微米,比表面積范圍集中在1-5m/g,是微晶石墨的集合體,只有在電子顯微鏡下才能見到晶形。此類石墨的特點是表面呈土狀,缺乏光澤,潤滑性比鱗片石墨稍差。品位較高。一般的60~85%,少數高達90%以上。一般應用于鑄造行業比較多。隨著石墨