關于RNA的自我復制的介紹
進一步的研究還發現一些RNA病毒如R17、f2、MS2等,可以以RNA為模板直接復制新的RNA。這些病毒都屬于最簡單的類型。例如,MS2的RNA只含有大約350個核苷酸,僅編碼三種蛋白質:外殼蛋白,附著蛋白(attachment protein,其功能主要是使病毒能附著于寄主細胞并進入其內部)、RNA復制酶(RNA replicase)的一個亞基(該亞基與寄主細胞的三種蛋白質共同形成RNA復制酶,可以使病毒RNA進行自我復制)。......閱讀全文
全球首個能自我復制的新冠疫苗獲批
近日,日本批準了一種針對新冠病毒的自擴增RNA(saRNA)疫苗——ARCT-154。 據《自然》報道,該疫苗由美國創新RNA療法研發公司Arcturus Therapeutics與澳大利亞生物技術公司CSL合作開發,是世界上第一種完全獲批的saRNA疫苗。 saRNA是使用RNA研發新藥和
全球首個!能自我復制的新冠疫苗獲批
近日,日本批準了一種針對新冠病毒的自擴增RNA(saRNA)疫苗——ARCT-154。 據《自然》報道,該疫苗由美國創新RNA療法研發公司Arcturus Therapeutics與澳大利亞生物技術公司CSL合作開發,是世界上第一種完全獲批的saRNA疫苗。 saRNA是使用RNA研發新藥
需要RNA中間物的復制型轉座
逆轉錄轉座子都需要RNA中間物,但LTR逆轉錄轉座子和無LTR逆轉錄轉座子在轉座的具體步驟上有很大的差別。LTR逆轉錄轉座子進行轉座時,形成cDNA的過程與逆轉錄病毒合成cDNA相同,雙鏈cDNA通過剪切一黏接轉座插入靶序列。無LTR逆轉錄轉座子的轉座過程較復雜,以LINE為例,轉座的基本過程如下:
負鏈RNA病毒復制的主要步驟
有些ssRNA病毒,它們的遺傳物質為正鏈RNA,可以行使mRNA的功能。一旦病毒顆粒中的RNA進入寄主細胞,就直接作為mRNA,翻譯出所編碼的蛋白質,其中包括衣殼蛋白和病毒的RNA聚合酶。然后在病毒RdRp(RNA指導的RNA聚合酶,即RNA復制酶)的作用下復制病毒RNA。RdRp同時具有解旋酶的功
關于復制酶的發展歷史介紹
1990年,美國科學家Golemboski在研究TMV基因組的編碼54KD蛋白的基因時,意外地發現將該基因轉入煙草后獲得的轉其因煙草能完全抵抗TMV的侵染。國內有些實驗室很快克隆了TMV和CMV的復制酶基因,并獲得了高抗性煙草轉基因工程植株。利用病毒復制酶基因介導的抗性與上述其他基因介導的抗性相
關于復制型基因的克隆介紹
將目的基因仍保留在染色體以外的克隆系統稱為復制型基因克隆系統,以區別整合到染色體上的整合型克隆系統。盡管有大量不同的噬菌體,但所有已知的乳球菌復制型克隆系統都是由質粒構建的。 乳球菌遺傳學研究證明,乳球菌含有數量不等的質粒,多則十幾個。它們當中一些編碼重要的代謝物質,為了分析和克隆這些基因,以
關于擬病毒的復制機制介紹
類病毒RNA的復制不需借助輔助病毒,但由于其不編碼任何蛋白,因而類病毒的復制完全依賴于宿主的轉錄系統。所有類病毒的復制均為RNA-RNA直接轉錄,并不涉及DNA。在類病毒感染的植物體中,采用分子雜交技術可以發現多體的類病毒(+)鏈和(一)鏈RNA,以及二者的復合物,因此類病毒的復制可能是滾環模式
關于半保留復制的基本介紹
半保留復制(semiconservative replication)是DNA復制與中心體復制 [3] 的模式。親代DNA雙鏈分離后的兩條單鏈均可作為新鏈合成的模板,復制完成后的子代DNA分子的核苷酸序列均與親代DNA分子相同,但子代DNA分子的雙鏈一條來自親代,另一條為新合成的鏈,故稱為半保留
病毒RNA的復制的反應特點和缺陷
病毒RNA進入宿主細胞后,可進行復制,即在RNA指導的RNA聚合酶催化進行RNA合成反應。RNA復制酶催化的合成反應是以RNA為模板,由5′向3′方向進行RNA鏈的合成。RNA復制酶缺乏校對功能的內切酶活性,因此RNA復制的錯誤率較高,RNA復制酶只是特異地對病毒的RNA起作用,而宿主細胞的RNA一
DNA復制的復制過程介紹
DNA復制是一個邊解旋邊復制的過程。復制開始時,DNA分子首先利用細胞提供的能量,在解旋酶的作用下,把兩條螺旋的雙鏈解開,這個過程叫做解旋。然后,以解開的每一段母鏈為模板,以周圍環境中游離的四種脫氧核苷酸為原料,按照堿基互補配對原則,在有關酶的作用下,各自合成與母鏈互補的一段子鏈。隨著解旋過程的進行
Nature重要成果:對抗癌細胞自我復制的分子奧秘
針對病毒感染和癌癥最有效的治療方法之一就是一類被稱為核苷類似物(nucleoside analogs)的藥物。這種本質上其實是分子元件錯誤版本的化合物能進入細胞,整合到DNA中,并有效的阻止病毒和癌細胞自我拷貝。此類化合物中,比如5-氟尿嘧啶(5-fluorouracil)的化療藥物,常見的艾滋
新型冠狀病毒自我復制的第一步
轉錄。新型冠狀病毒進入人體細胞,經過病毒的轉錄、合成、裝配、出芽的過程進行病毒的復制。新型冠狀病毒是單鏈正股的RNA病毒,以自身為模板進行復制。一旦離開人體,常溫下最長可以存活數小時,無法復制和繁殖。新型冠狀病毒包括三個膜蛋白,即S蛋白、M蛋白、E蛋白。S蛋白是刺突蛋白,可以與身體器官的ACE2受體
關于小干擾RNA的RNA激活介紹
已經發現dsRNA還可以激活基因表達,這種機制被稱為“小RNA誘導的基因激活”或RNAa。已經顯示靶向基因啟動子的dsRNA誘導相關基因的有效轉錄激活。使用合成的dsRNA在人細胞中證明RNAa,稱為“小活化RNA”(saRNA)。尚不清楚RNAa是否在其他生物體中是保守的。
關于DNA復制過程的岡崎片段與半不連續復制的介紹
因為DNA的兩條鏈是反向平行的,所以在復制叉附近解開的DNA鏈,一條為5’—〉3’方向,另一條為3’—〉5’方向,兩個模板極性是不同。所有已知DNA聚合酶合成方向均為5’—〉3’方向,不為3’—〉5’方向,所以無法解釋DNA的兩條鏈同時進行復制的問題。解釋DNA兩條鏈各自模板合成子鏈等速復制現象
Cell顛覆性發現:RNA的自我校讀
蛋白質合成是DNA信息通過信使依次傳遞的過程,其中任何一步都有可能出錯。正因如此,每一步都有專門的酶來進行校讀,確保DNA編碼的信息能夠正確地傳遞到蛋白。最近,冷泉港實驗室(CSHL)的科學家們揭示了一種全新的質控機制。他們驚訝的發現,校讀不再是酶的ZL,tRNA本身就有內置
關于復制叉的基本信息介紹
DNA復制過程中,非復制區保持著親代雙鏈結構,復制區的雙螺旋分開,從此處形成兩個子代雙鏈,這兩個相接區域稱為復制叉,此處雙螺旋的結構被破壞。復制就是復制叉沿著親代DNA鏈移動,因此存在親代雙鏈的連續變性及子代雙螺旋的重新形成過程。 復制叉從位于復制起始點的起點開始沿著DNA鏈有序移動。起始點可
關于復制型的基本信息介紹
復制型指某種核酸處于復制狀態的各種分子結構。更多地用于指RNA或單股DNA病毒復制期間形成的雙螺旋中間體。與之相聯系的主要有復制型DNA,復制型基因克隆,復制型轉座等過程,而復制型轉座又可分為兩種,一種需要RNA作為中間產物,一類不需要RNA作為中間產物。
關于半不連續復制的綜述介紹
問題的提出 DNA兩條鏈反向平行,一條鏈走向為5‘→3‘,另一條鏈也為5‘→3‘,但與復制叉移動方向相反,但所有DNA聚合酶合成方向都是在引物3‘-OH上合成,使鏈從5‘→3‘延長,那么5‘→3‘鏈是如何同時作為模板復制呢? 1968年岡崎提出DNA不連續復制模型(P418圖34-18),認
關于復制子疫苗的基本介紹
委內瑞拉馬腦炎病毒(Venezue- lan equine encephalitis virus, VEEV) 復制子表達 EBOV糖蛋白(GP)或核蛋白(NP)后,被用于埃博拉疫苗的研究。 單獨免疫表達NP的VEEV復制子可對小鼠提供完 全保護,單獨免疫表達 GP 的 VEEV 復制子可對豚
關于半不連續復制的特點介紹
(一)復制叉由5’向3’方向連續復制,稱為前導鏈;另一條鏈復制叉由3’向5’移動,而DNA復制方向不變,形成許多不連續片段,稱為岡崎片段,最后連接成完整的DNA,稱為滯后鏈。 (二)首先由引物合成酶由5’向3’方向合成10個核苷酸以內的RNA引物,然后聚合酶III在引物3’-羥基上合成DNA,
關于復制缺陷型疫苗的基本介紹
EBOV 利用反向遺傳技術,可 對 EBOV 基因組進行改造。通過將轉錄激活物額外病毒結構蛋白(VP30)的基因去除,獲得沒有復制能力的 EBOV (rEBOVΔVP30)。將 rEBOVΔVP30 接種可穩定表達 VP30 的細胞系后,病毒可感染細胞產生子代病毒, 但由于基因組缺少 VP30,
關于DNA滾環復制的過程介紹
環狀DNA可以采取上述典型的DNA復制方式進行復制,即從復制起點開始,雙向同時進行,形成θ樣中間物,故又稱"θ"型復制,最后兩個復制方向相遇而終止復制。但有些環狀DNA采用另個一種方式,即滾環復制。例如許多病毒DNA的復制、F因子在接合(conjugation)轉移時其DNA的復制,以及許多基因
關于DNA滾環復制的基本介紹
滾環式復制(rolling circle replication)是噬菌體中常見的DNA復制方式。許多病毒DNA的復制、質粒、F因子在接合(conjugation)轉移時其DNA的復制,以及許多基因擴增時都采用這種方式。 在以這種機制進行的復制中,親代雙鏈DNA的一條鏈在DNA復制起點處被切開
關于半不連續復制的模型介紹
1978年Olivera提出了半不連續(semidiscontinuous)復制模型,也就是說前導鏈上的合成是連續的,只有后滯鏈上的合成才是半連續的。 已經弄清原來是由于細胞內都存在有dTTP和dUTP,而DNApolⅢ卻并不能區分它們,因此也會將dUTP加入到DNA中,形成A·U對。那么在D
關于腺病毒的轉錄與復制的介紹
一旦病毒基因組進入細胞核,就將進行一系列的復雜而有序的逐級放大的剪切和轉錄過程。一般的,以病毒DNA開始復制為分界線,按轉錄時間的先后,將腺病毒基因大致區分為早期(E1~4)和晚期轉錄單位(L1~5)。各種腺病毒基因又可以進一步地分為更小的轉錄單位,如E1區可以進一步分為E1A和E1B,每個轉錄
關于DNA的半不連續復制的介紹
在DNA復制過程中,雙螺旋被解開,互補鏈被解旋酶分離,形成了所謂的DNA復制叉。在這個分叉之后,DNA引物酶和DNA聚合酶開始起作用,合成一個新的互補鏈。因為這些酶只能從5 '到3 '的方向工作,這兩個解開的DNA模板鏈以不同的方式復制。其中,前導鏈的模板鏈具有5 '至3
關于復制子的基因級的介紹
為了正確的遺傳,一個細菌復制子需要以下功能:1、起始復制的過程。2、控制起始的頻率。3、將復制的染色體分到子細胞中去。前兩種功能都是原點來行使。分配可能是一種獨立的功能,但在原核系統中通常與鄰近原點的序列有關。真核生物的原點不行使分配的功能,它只與復制有關。 根據一個普遍的規律,含有原點的DN
細胞化學詞匯RNA復制酶(RdRp)
即“RNA依賴的RNA聚合酶(RdRp)”RNA聚合酶的一種,存在于大部分RNA病毒中。和細胞中用來轉錄的RNA聚合酶(DdRp)不同,RNA復制酶的模板是RNA分子。某些RNA復制酶還有解旋酶活性,正鏈RNA或雙鏈RNA病毒復制時都會產生雙鏈RNA,RNA復制酶可以解開這些雙鏈,保證RNA的復制順
RNA復制、轉錄與逆轉錄
轉錄是以DNA為模板合成RNA的過程,經過轉錄DNA分子中的貯存信息傳遞到RNA分子中,再由mRNA做為模板合成蛋白質分子。逆轉錄也是從RNA的一個特定位置開始的,以RNA分子中的一條鏈為模板,在逆轉錄酶的作用下,以四種脫氧核苷酸為原料,合成方向仍是5'→3',完成cDNA的合成。大
不需要RNA中間物的復制型轉座
在不需要RNA中間物的復制型轉座過程中,轉座子一般由Y2一轉座酶催化進行滾環復制。使用此途徑進行復制的轉座子有IS91和Helitron,轉座過程一般有兩種機制。一種機制的復制和插入分開進行,具體步驟如下:①轉座酶切開轉座子起點處的一條鏈,酶的Tyr—OH與切口的5‘—磷酸基以酯鍵連接,切口的另一側