• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 世界最大硅基薄膜光伏電站將在內蒙古動工

    記者近日獲悉,目前世界上最大的硅基薄膜光伏電站項目——國家“金太陽”太陽能示范電站項目將在內蒙古自治區動工。 據悉,這一5兆瓦的光伏電站由中國節能環保集團公司投資,將采用5.7平方米雙結硅基薄膜太陽能電池技術。新奧集團旗下的新奧太陽能源公司宣布中標該項目,為其提供雙結硅基薄膜組件、配件產品及其他相關集成服務。 據介紹,原有薄膜太陽能電池產品能夠實現工業化生產的轉化率僅維持在6%,新奧則將其提高到9.2%。這是目前世界上硅基薄膜太陽能電池光電最高轉換率。此外,新奧生產的5.7平方米硅基薄膜電池板也是世界上最大的太陽能電池板。 ......閱讀全文

    新加坡開發出新型太陽能電池材料

    實驗室的新型鈣鈦礦太陽能電池會發光   將來有一天,你的手機或電腦沒電了,只需拿到太陽下曬一曬就能繼續使用了,因為它們的顯示器同時也是太陽能電池。這就是新加坡南洋理工大學(NTU)科學家發表在《自然·材料》雜志上的最新成果,他們開發出的下一代太陽能電池材料,不僅能把光轉化成電,電池本身還能按照需要

    納米線技術能將太陽能電池效率翻倍

      挪威科技大學(NTNU)研究小組開發了一種使用半導體納米線材料制造超高效率太陽能電池的方法。如將其用于傳統的硅基太陽能電池,這一方法有望以低成本將當今硅太陽能電池的效率提高一倍。該研究論文發表在美國化學學會期刊《ACS光子學》上。  新技術主要開發者、NTNU博士研究生安詹·穆克吉表示,他們的新

    多層太陽能電池轉換效率高達41.1%

      10月27日,德國弗勞恩霍夫協會在布魯塞爾領取了歐洲技術與研究組織協會(EARTO)頒發的2010年創新獎。EARTO是歐洲研究和技術組織的行業協會,其頒發的創新獎旨在表彰研究和技術組織推動了經濟和社會進步的研究工作。   此次獲獎的研究工作來自于弗賴堡的弗勞恩霍夫太陽能系統研究所

    加研制出全光譜太陽能電池

      據美國物理學家組織網6月27日(北京時間)報道,加拿大科學家表示,他們研發出了一款新式的全光譜太陽能電池,其不但可以吸收太陽發出的可見光,也可以吸收不可見光,從理論上講,轉化效率可高達42%,超過現有普通太陽能電池31%的理論轉化率。研究發表在最新一期的《自然·光子學》雜志上。   此款基于膠

    德國太陽能電池-創造效能轉化新紀錄

      德國弗勞恩霍夫研究所以及柏林赫姆霍茲研究中心近日宣布,研發出一種新型太陽能電池,并創造了效能轉化的新紀錄。   通過三年的努力,研究人員研發出的這種太陽能電池可將效能轉化率提高至44.7% ,濃度可達297聲納。這意味著包括紅外線和紫外線在內的太陽能中,有44.7%都可以轉化為電能。這在太

    新技術能將太陽能電池印在紙上

      據美國物理學家組織網1月4日報道,麻省理工研究人員展示了一種新型印刷技術,該技術能將太陽能電池印制到薄薄的、柔軟的材料如普通衛生紙上。盡管用衛生紙做基底不像實際的太陽能設備那么高效,但它是低成本印制技術,廣泛用于各種材料的多元化體現。   新技術稱為氧化化學氣相淀積(oxidative che

    納米線技術能將太陽能電池效率翻倍

    挪威科技大學(NTNU)研究小組開發了一種使用半導體納米線材料制造超高效率太陽能電池的方法。如將其用于傳統的硅基太陽能電池,這一方法有望以低成本將當今硅太陽能電池的效率提高一倍。該研究論文發表在美國化學學會期刊《ACS光子學》上。 新技術主要開發者、NTNU博士研究生安詹·穆克吉表示,他們的新方

    化學所制備柔性可穿戴太陽能電池

      柔性可穿戴電子是未來電子元器件發展的熱點方向,電源是其重要的組成部分。電源的選擇和設計影響未來可穿戴電子的設計與功能。目前,電源對可穿戴電子的戶外使用性、大面積貼合性和安全性有較大限制。  近年來,金屬有機雜化鈣鈦礦太陽能電池以其優越的光電轉換性能而受到廣泛關注。基于鈣鈦礦材料平面結構器件的光電

    《科學》:新型太陽能電池效率高達6.5%

    《科學》:新型太陽能電池效率高達6.5% 來源:科學網 作者:任霄鵬 發布時間:2007-07-15 這是迄今利用有機聚合物材料達到的最高水平;3年后進入市場 最近,科學家利用新材料和制作工藝,將有機太陽能電池的效率提高到了到6.5%。相關論文發表在7月13日的《科學》雜志上。 進行該

    納米線技術可將太陽能電池效率翻倍

      挪威科技大學(NTNU)研究小組開發了一種使用半導體納米線材料制造超高效率太陽能電池的方法。如將其用于傳統的硅基太陽能電池,這一方法有望以低成本將當今硅太陽能電池的效率提高一倍。該研究論文發表在美國化學學會期刊《ACS光子學》上。  新技術主要開發者、NTNU博士研究生安詹·穆克吉表示,他們的新

    石墨烯:助太陽能電池“遍地開花”

       想象這樣一些場景:未來,無論是窗戶和墻壁,還是手機和筆記本電腦,太陽能電池無處不在。麻省理工學院(MIT)電子工程和計算機科學系教授孔靜(音譯),近日利用石墨烯研發的可彎曲透明太陽能電池,就讓這一夢想中的場景離現實更近了一步。這種太陽能電池無需單獨安裝,可集成到手機和電腦屏幕內,有望大幅降低這

    “人造樹葉”:新一代太陽能電池

      美國北卡羅來納州立大學研究小組日前展示了一種新太陽能裝置――“人造樹葉”。該設備基于水凝膠,能夠像太陽能電池一樣產生電力,且造價有望比現有硅基太陽能電池更低,環保效果更好。  “人造樹葉”由充滿光敏分子的水基凝膠構成,具有兩個涂覆了碳材料的電極,研究人員在試驗中曾使

    有機太陽能電池界面修飾新進展

      近日,中國科學院國家納米科學中心研究員周惠瓊課題組與研究員裘曉輝、張勇課題組合作,在有機太陽能電池界面層的納米級表面能分布調控方面取得新進展。相關研究成果發表于Joule雜志(Joule, 2021, https://doi.org/10.1016/j.joule.2021.09.001)。  

    太陽能電池的分類和參數性能介紹

    太陽能電池是通過光電效應或者光化學效應直接把光能轉化成電能的裝置。又稱為“太陽能芯片”或“光電池”,它只要被滿足一定照度條件的光照度,瞬間就可輸出電壓及在有回路的情況下產生電流。在物理學上稱為太陽能光伏(Photovoltaic,縮寫為PV),簡稱光伏。太陽能電池按結晶狀態可分為結晶系薄膜式和非結晶

    制冷新涂料可提高太陽能電池效率

       美國斯坦福大學范汕洄教授領導的一個研究團隊新近發明一種透明制冷涂層材料,可以在不影響太陽能電池板吸收陽光性能的同時為其降溫,從而提高太陽能電池的工作效率及持久性。   范汕洄團隊9月21日在美國《國家科學院學報》上報告說,他們利用微加工技術在二氧化硅薄片上蝕刻微米量級的小孔,設計了一種二氧化硅

    全球首塊全碳太陽能電池問世

    ????近日,美國斯坦福大學的研究人員研制出全球首塊全碳太陽能電池,將來有望替代材料昂貴的光電設備。據介紹,該款超薄的電池將不僅可以減少生產成本,而且是由碳材料制成,可作為涂層加以應用,能以較低成本獲得出色的性能。 ????眾所周知,地球上擁有大量的可用陽光,太陽能將成為未來人們

    新奇納米超材料助推太陽能電池革命

    研究人員謝爾蓋·克魯克和材料結構示意圖。  據澳大利亞國立大學(ANU)網站消息,該校和美國加州大學伯克利分校合作,開發出一種屬性奇特的納米超材料,該材料被加熱時能以不同尋常的方式發光。這一成果有望推動太陽能電池產業的革命,帶來能把輻射熱轉化成電能的熱光伏電池,在黑暗中收集熱量來發電。  ANU物理

    什么是碲化鎘薄膜太陽能電池?

    碲化鎘薄膜太陽能電池簡稱CdTe電池,它是一種以p型CdTe和n型CdS的異質結為基礎的薄膜太陽能電池。

    單晶硅太陽能電池的測試條件

    (1)由于太陽能組件的輸出功率取決于太陽輻照度和太陽能電池溫度等因素,因此太陽能電池組件的測量在標準條件下(STC)進行,標準條件定義為: 大氣質量AM1.5, 光照強度1000W/m2,溫度25℃。(2)在該條件下,太陽能電池組件所輸出的最大功率稱為峰值功率,在很多情況下,組件的峰值功率通常用太陽

    柔性鈣鈦礦太陽能電池技術介紹

    關于理想的光伏器件,其應當具有光電轉換效率高、制造成本低、質量輕、壽命長等特點。以有機鉛鹵化物鈣鈦礦作為光吸收材料的太陽能電池,雖然具有較高的能量轉換效率(約20%),且可以通過低成本、操作簡單的溶液法制備獲得,但由于其在自然環境下的持續工作穩定性較差,使其距離大規模商業化生產尚有一定距離。此外,隨

    碲化鎘薄膜太陽能電池的優點

    1、理想的禁帶寬度:CdTe的禁帶寬度一般為1.47eV,CdTe的光譜響應和太陽光譜非常匹配。2、高光吸收率:CdTe的吸收系數在可見光范圍高達104cm-1以上,95%的光子可在1μm厚的吸收層內被吸收。3、轉換效率高:碲化鎘薄膜太陽能電池的理論光電轉換效率約為28%。4、電池性能穩定:一般的碲

    薄膜太陽能電池的分類與發展歷史

    薄膜太陽能電池種類  為了尋找單晶硅電池的替代品,人們除開發了多晶硅,非晶硅薄膜太陽能電池外,又不斷研制其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物,硫化鎘,碲化鎘及銅錮硒薄膜電池等。  上述電池中,盡管硫化鎘薄膜電池的效率較非晶硅薄膜太陽能電池效率高,成本較單晶硅電池低,并且也易于大

    超薄太陽能電池的技術進展和前景

    法國國家科學研究中心的一組科學家進行了一項研究,以評估基于晶體硅,砷化鎵(GaAs)和硒化銅銦鎵(CIGS)的超薄太陽能電池的潛力和局限性。在最近發表在《自然能源》上的“超薄太陽能電池的進展和前景”中,科學家聲稱生產太陽能電池的厚度至少要比商業太陽能電池薄十倍,這將便宜得多,因為所需材料的數量明顯減

    多晶硅太陽能電池的性能特點

    多晶硅太陽能電池一般采用低等級的半導體多晶硅,或者專門為太陽能電池使用而生產的鑄造多晶硅等材料。與單晶硅太陽能電池相比,多晶硅太陽能電池成本較低,而且轉換效率與單晶硅太陽能電池比較接近,它是太陽能電池的主要產品之一。多晶硅太陽能電池硅片制造成本低,組件效率高,規模生產時的效率已達18%左右。多晶硅太

    單晶硅太陽能電池的性能特點

    單晶硅太陽能電池轉換效率最高,技術也最為成熟。在實驗室里最高的轉換效率為24.7%(理論最高光電轉化效率為25%),規模生產時的效率為18%(截至2011年)。在大規模應用和工業生產中仍占據主導地位,但由于單晶硅成本價格高,大幅度降低其成本很困難,為了節省硅材料,發展了多品硅薄膜和非晶硅薄膜作為單晶

    美研制能自我修復的太陽能電池

      據美國物理學家組織網1月5日(北京時間)報道,美國研究人員正在研制一種新式太陽能電池,通過使用碳納米管和DNA等材料,該電池能像植物體內天然的光合作用系統一樣進行自我修復,從而延長電池壽命并減少制造成本。  光電化學電池可將太陽光轉化為電力,使用能導電的電解液運送電子并制造出電流

    《科學》:新型太陽能電池效率高達6.5%

    這是迄今利用有機聚合物材料達到的最高水平;3年后進入市場 最近,科學家利用新材料和制作工藝,將有機太陽能電池的效率提高到了到6.5%。相關論文發表在7月13日的《科學》雜志上。?進行該項研究的是加州大學圣芭芭拉分校的諾獎得主、物理學教授Alan Heeger和同事Kwanghee Lee,以及一個

    太陽能電池發展現狀及前景

    產量增速突破30%太陽能電池又稱為“太陽能芯片”或“光電池”,是一種利用太陽光直接發電的光電半導體薄片。它只要被滿足一定照度條件的光照到,瞬間就可輸出電壓及在有回路的情況下產生電流。在物理學上稱為太陽能光伏(Photovoltaic,縮寫為PV),簡稱光伏。我國太陽能電池行業近年來在節能環保的大環境

    研究:有機太陽能電池效率極值為21%

      據日經BP社報道,日本產業技術綜合研究所(產綜研)對有機太陽能電池將陽光轉換成電力的能力——“光電轉換效率”的理論極限進行了模擬計算,得出氣數值約為21%。此次在理論上計算出的約21%的極限值高出目前所能實現的10~12%實際效率許多,表明今后通過選擇及改進材料并優化結構,還有望使轉換效率進一步

    碲化鎘薄膜太陽能電池的結構

    碲化鎘薄膜太陽能電池是在玻璃或是其它柔性襯底上依次沉積多層薄膜而構成的光伏器件。一般標準的碲化鎘薄膜太陽能電池由五層結構組成:1、玻璃襯底:主要對電池起支架、防止污染和入射太陽光的作用。2、TCO層:即透明導電氧化層。主要起的是透光和導電的作用。3、CdS窗口層:n型半導體,與p型CdTe組成p-n

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载