替代凝膠電泳
標準是使用瓊脂糖凝膠電泳和EB著色。通過片段的長度、純度和條帶的熒光量確定片段。HRMA是一種很有優勢的技術;通過熔解圖、存在其它熔解圖的純度(沒有額外的熔解峰)和產生的大量熒光信號(圖6)。使用HRMA的優勢很明顯;不需要灌膠、使用危險化學藥品(EB),熔解比電泳速度快,數據分析可以自動完成。此外,HRMA是一種非破壞性的方法,當HRMA沒能得到明確的結果時,片段依然可以在凝膠上進行分析。
圖6.用HRMA替代凝膠電泳。A:5個不同PCR片段的分析;因為片段間有清晰的熔解圖差異,所有五個片段可以在一個分析完成。當熔解圖部分重疊,可以做到每個片段分析。B:PCR上可以進行96個不同樣品的分析。一個PCR失敗的熒光,其它的可以通過熒光水平估計。純化,包括引物二聚體的存在,可以被HRMA差異圖的分析檢測出(未顯示)。C:HRMA后插入384板PCR后,進行第二輪選擇。幾個清晰的熔解組確定,表示包含克隆的組有相同的插入。確認所有組的存在,第一次分析后確認分析需要分離和軟件必須重新分組。重復這一過程直到所有組得到確定。
在我們實驗室,HRMA迅速取代了凝膠電泳用于分析PCR產物。加入顏料后進行PCR(每10 μL體系加1 μL
10ⅹLC-Green染料),樣品在管內95℃
5min,降至室溫,然后熔解。圖5顯示了分析5個不同片段,都得到了清晰的熔解圖。在熔解峰低Tm值處可以辨認處引物二聚體。OUT等(提交手稿)使用HRMA代替凝膠電泳檢測擴增,同時在MUTYH基因測序前確定長期的PCR指導。作者成功地檢測了幾乎所有的期望突變達0.5%(1/200同源染色體)
克隆鑒定
一些實驗產生一系列克隆需要測序確定。這些包括體外突變實驗、甲基化研究、CDNA克隆確定不同剪接的水平或等位基因表達和噬菌體篩選。HRMA提供了一種有吸引力的工具篩選克隆,檢測那些具有相同插入和變異。減少了大量的測序工作。圖6C顯示了第二次噬菌體篩選的結果。幾個克隆組的實驗結果具有相同的熔解圖,顯示實驗成功地選擇了幾個不同的噬菌體克隆。隨后每組的克隆代表測序驗證了HRMA的結果;組內序列差異和測序確定[Pepers等2009]。以前,克隆插入確定是使用酶切和凝膠電泳,靈敏度低且實驗繁瑣[Verheesen
等, 2006]
結論
HRMA的優勢使它迅速吸引了一批新用戶。HRMA操作簡單、簡單、靈活、成本低,非破壞性、靈敏度和特異性高的特點是它成為了篩查患者致病突變的一種新方法。綜上所述,HRMA有多個吸引力的其他應用,使它具有多種分析核酸的功能。由于HRMA依然是一項新技術,期待它有更好的發展。Fluidigm公司推出了一個納升qPCR系統[Spurgeon等,
2008],目前推出了一個96個樣品分析的PCR實驗(例如,同時進行9261個實驗);設想這樣一個系統時,將有助于HRMA。
參考文獻
Al Momani R, Van Der Stoep N, Bakker E,
Den Dunnen JT, Breuning MH,Ginjaar HB. 2009. Rapid and cost effective
detection of small mutations in the DMD gene by high resolution melting
curve analysis. Neuromuscul Disord(in press).
Armour JA, Sismani C,
Patsalis PC, Cross G. 2000. Measurement of locus copy number by
hybridisation with amplifiable probes. Nucleic Acids Res 28:605–609.
Aten
E, White SJ, Kalf ME, Vossen RHAM, Thygesen HH, Kriek M, Breuning
MH,Den Dunnen JT. 2008. Methods to detect CNVs in the human
genome.Cytogenet Genome Res 123:313–321.
Bruder CE, Piotrowski A,
Gijsbers AA, Andersson R, Erickson S, de Stahl TD,Menzel U, Sandgren J,
von Tell D, Poplawski A, Crowley M, Crasto C,
Partridge EC, Tiwari H,
Allison DB, Komorowski J, Van Ommen GJB,Boomsma DI, Pedersen NL, Den
Dunnen JT, Wirdefeldt K, Dumanski JP.2008. Phenotypically concordant and
discordant monozygotic twins display different DNA
copy-number-variation profiles. Am J Hum Genet 82:763–771.
Dobrowolski
S, Gray J, Miller T, Sears M. 2009. Identifying sequence variants in
the human mitochondrial genome using high-resolution melt (HRM)
profiling.Hum Mutat 30:891–898.
Ehrich M, Field JK, Liloglou T,
Xinarianos G, Oeth P, Nelson MR, Cantor CR,van den Boom D. 2006.
Cytosine methylation profiles as a molecular marker in non-small cell
lung cancer. Cancer Res 66:10911–10918.
Erali M, Palais R, Wittwer C. 2008. SNP genotyping by unlabeled probe melting analysis. Methods Mol Biol 429:199–206.
Gundry
CN, Dobrowolski SF, Martin YR, Robbins TC, Nay LM, Boyd N, Coyne T,
Wall MD, Wittwer CT, Teng DH. 2008. Base-pair neutral homozygotes can be
discriminated by calibrated high-resolution melting of small amplicons.
Nucleic Acids Res 36:3401–3408.
Herrmann MG, Durtschi JD, Bromley
LK, Wittwer CT, Voelkerding KV. 2006. Amplicon DNA melting analysis for
mutation scanning and genotyping: crossplatform comparison of
instruments and dyes. Clin Chem 52:494–503.
Herrmann MG, Durtschi JD,
Wittwer CT, Voelkerding KV. 2007. Expanded instrument comparison of
amplicon DNA melting analysis for mutation scanning and genotyping. Clin
Chem 53:1544–1548.
Hes FJ, Nielsen M, Bik EC, Konvalinka D, Wijnen
JT, Bakker E, Vasen HF, Breuning MH, Tops CM. 2008. Somatic APC
mosaicism: an underestimated cause of polyposis coli. Gut 57:71–76.
Intemann
CD, Thye T, Sievertsen J, Owusu-Dabo E, Horstmann RD, Meyer CG.2009.
Genotyping of IRGM tetranucleotide promoter oligorepeats by
fluorescenceresonance energy transfer. Biotechniques 46:58–60.
Maat
W, van der Velden PA, Out-Luiting C, Plug M, Dirks-Mulder A, Jager
MJ,Gruis NA. 2007. Epigenetic inactivation of RASSF1a in uveal melanoma.
InvestOphthalmol Vis Sci 48:486–490.
Nguyen-Dumont T, Le Calvez-Kelm
F, Forey N, McKay-Chopin S, Garritano S,Gioia-Patricola L, De Silva D,
Weigel R, Breast Cancer Family Registries (BCFR),Kathleen Cuningham
Foundation Consortium for research into Familial Breast cancer
(kConFab), Sangrajrang S, Lesueur F, Tavtigian SV. 2009. Description and
validation of high-throughput simultaneous genotyping and mutation
scanning by high-resolution melting curve analysis. Hum Mutat
30:884–890.
Pepers B A, Schut MH, Vossen RHAM, Van Ommen GJB, Den
Dunnen JT, Van Roon-Mom WMC. 2009. Cost-effective HRMA pre-sequence
typing of clone libraries:application to phage display selection. BMC
Biotechnology, in press. Provaznikova D, Kumstyrova T, Kotlin R, Salaj
P, Matoska V, Hrachovinova I, Rittich S. 2008. High-resolution melting
analysis for detection of MYH9 mutations. Platelets 19:471–475.
Reed
GH, Wittwer CT. 2004. Sensitivity and specificity of
single-nucleotidepolymorphism scanning by high-resolution melting
analysis. Clin Chem50:1748–1754.
Rouleau E, Lefol C, Bourdon V,
Coulet F, Noguchi T, Soubrier F, Bieche I, Olschwang S, Sobol H,
Lidereau R. 2009. Quantitative PCR high-resolution melting (qPCR–HRM)
curve analysis, a new approach to simultaneously screen point mutations
and large rearrangements: application to MLH1 germline mutations in
Lynch Syndrome. Hum Mutat 30:867–875.
Schouten JP, McElgunn CJ,
Waaijer R, Zwijnenburg D, Diepvens F, Pals G. 2002. Relative
quantification of 40 nucleic acid sequences by multiplex
ligationdependent probe amplification. Nucleic Acids Res 30:e57.
Seipp
MT, Durtschi JD, Liew MA, Williams J, Damjanovich K, Pont-Kingdon G,
Lyon E, Voelkerding KV, Wittwer CT. 2007. Unlabeled oligonucleotides
asinternal temperature controls for genotyping by amplicon melting. J
Mol Diagn9:284–289.
Seipp MT, Pattison D, Durtschi JD, Jama M,
Voelkerding KV, Wittwer CT. 2008.Quadruplex genotyping of F5, F2, and
MTHFR variants in a single closed tube by high-resolution amplicon
melting. Clin Chem 54:108–115.
Spurgeon SL, Jones RC, Ramakrishnan R.
2008. High throughput gene expression measurement with real time PCR in
a microfluidic dynamic array. PLoS ONE 3:e1662.
Suls A, Claeys KG,
Goossens D, Harding B, Van Luijk R, Scheers S, Deprez L, Audenaert D,
Van Dyck T, Beeckmans S, Smouts I, Ceulemans B, Lagae L,Buyse G, Barisic
N, Misson JP, Wauters J, Del Favero J, De Jonghe P, Claes LR.2006.
Microdeletions involving the SCN1A gene may be common in
SCN1A-mutation-negative SMEI patients. Hum Mutat 27:914–920.
Tindall
EA, Petersen DC, Woodbridge P, Schipany K, Hayes VM. 2009. Assessing
high-resolution melt curve analysis for accurate detection of gene
variants in complex DNA fragments. Hum Mutat 30:876–883.
van der
Stoep N, van Paridon CDM, Janssens T, Krenkova P, Stambergova A,Macek M,
Matthijs G, Bakker E. 2009. Diagnostic guidelines for highresolution
melting curve (HRM) analysis: an interlaboratory validation of BRCA1
mutation scanning using the 96-well LightScannerTM. Hum Mutat
30:889–909.
Verheesen P, Roussis A, de Haard HJ, Groot AJ, Stam JC,
Den Dunnen JT, Frants RR, Verkleij AJ, Verrips CT, Van Der Maarel SM.
2006. Reliable and controllable antibody fragment selections from
Camelid non-immune libraries for target validation. Biochim Biophys Acta
1764:1307–1319.
Worm J, Aggerholm A, Guldberg P. 2001. In-tube DNA
methylation profiling by fluorescence melting curve analysis. Clin Chem
47:1183–1189.
Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor
RJ. 2003. High-resolution genotyping by amplicon melting analysis using
LCGreen. Clin Chem 49:853–860.
Zhou L, Errigo RJ, Lu H, Poritz MA,
Seipp MT, Wittwer CT. 2008. Snapback primer genotyping with saturating
DNA dye and melting analysis. Clin Chem 54:1648–1656.