• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 發布時間:2019-08-11 21:26 原文鏈接: 反向微柱的準備PreparationofReversedPhaseMicrocolumns

    INTRODUCTION
    One versatile strategy for sample cleanup prior to MALDI-MS analysis uses microscale columns designed for direct sample elution onto the MALDI target plate. This protocol describes the fabrication of a reversed-phase microcolumn designed for this purpose. The microcolumns are prepared from GELoader tips. This protocol has been optimized for sample cleanup prior to MALDI-MS. However, with slight modifications, it works equally well with samples destined for ESI-MS.
     
    MATERIALS 
     
    Reagents
     
    IMPORTANT: All reagents used in this protocol must be sequence grade.
    • Acetonitrile
       

    • Chromatography resins (Poros R1, R2, or Oligo R3, Applied Biosystems)
       

    • Formic acid (1%) (Optional, see note to Step 4)
       

    • Protein matrix solution (optional; see note to Step 8)


      • SA (sinapinic acid)
         

      • DHB (2,5-dihydroxybenzoic acid)
         

      • TFA (trifluoroacetic acid)
         

      • Acetonitrile
         
        Dissolve SA or DHB in 50% acetonitrile containing 0.1% TFA.
         

    • Peptide matrix solution (optional; see note to Step 8)


      • Acetonitrile
         

      • CHCA ({alpha}-cyano-4-hydroxy-cinnamic acid)
         

      • TFA (trifluoroacetic acid)
         
        Dissolve CHCA in 70% acetonitrile containing 0.1% TFA.
         

    • Methanol
       

    • Protein or peptide sample to be analyzed by mass spectrometry
       

    • Trifluoroacetic acid (TFA) (0.1%) (optional; see note to Step 4)
       

    Equipment
     
    • Forceps, blunt tip (optional; see Step 1)
       

    • GELoader pipette tips (Eppendorf)
       

    • MALDI-MS target
       

    • Pipette tip (disposable, 20-200 μL size)
       

    • Syringe (1 mL)
       

    • Tubes (microcentrifuge, 1.5 mL)
       

    METHOD
     
    1. Partially constrict a GELoader pipette tip by squeezing the narrow end. The two most common ways to do this are illustrated in Figure 1 and listed below:
       


       
      Figure 1. Methodology for preparing and using GELoader tip microcolumns. (a) Preparation of a constricted GELoader tip. (b) Generation of the column, application of the analyte sample, and elution of the analyte molecules.
       

      • Method 1: Place the narrow end of a GELoader tip flat on a hard surface. Roll a 1.5-mL microcentrifuge tube over the final 1 mm of the tip.
         

      • Method 2: Squeeze the narrow end of a GELoader tip using blunt forceps. To close the end, turn the tip once while holding it with the forceps.
         

    2. Prepare a slurry of 100-200 μL of chromatography resin in 70% acetonitrile (use ~1.5 mg of resin/100 μL of acetonitrile). Steps 3-8 are illustrated in Figure 1. 
       

    3. Load 20 μL of 70% acetonitrile in the top of the constricted GELoader tip, and add 0.5 μL of the resin slurry on top of the acetonitrile. Use a 1-mL syringe fitted to the GELoader tip with a disposable pipette tip to gently press the liquid down to create a small column at the end of the constricted microcolumn. Dry the column by letting all of the liquid escape from the bottom of the column before performing the next step.
       
      The disposable pipette tip must be cut twice to fit both the syringe and the GELoader tip. The amount of resin-slurry used to create the column should be varied with the approximate concentration of the sample. In general, the column height should be 1-6 mm (approximate bed volume is 10-60 nL) when working with peptides generated from poorly abundant, gel-separated proteins. 
       

    4. Apply 20 μL of 0.1% TFA to the top of the column. Equilibrate the column by gently pushing 10 μL of 0.1% TFA through it, using gentle air pressure generated by the syringe. The remaining 10 μL of 0.1% TFA should remain on top of the column bed. When the microcolumn is used as a cleanup step prior to nano-ESI-MS, 1% formic acid should be used instead of TFA, which is incompatible with ESI-MS. 
       

    5. Apply the protein/peptide sample on top of the remaining 10 μL of 0.1% TFA.
       

    6. Press the liquid gently through the column by applying air pressure with the syringe. Do not allow the column to dry out; leave ~2 μL of solution on top of the column bed.
       

    7. Wash the column with 20 μL of 0.1% TFA, and allow the column to run dry.
       

    8. Elute the analytes, using 0.5 μL of matrix solution, directly onto the MALDI-MS target. The 0.5 μL of matrix solution should be spotted as several droplets (5-10) on the target. Alternatively, if the analytes are to be analyzed by ESI-MS, elute the peptides from the column using methanol/formic acid/H2O (50:1:49) either directly into the capillary needle or into a microcentrifuge tube.
       
      The preferred MALDI matrices used for eluting protein from the column are either SA or DHB dissolved in 50% acetonitrile/0.1% TFA (see recipe for protein matrix solution). For eluting peptides from the column, the peptide matrix solution is preferentially used. Alternatively, the analytes can be eluted directly into a microcentrifuge tube for storage or further analysis, using any percentage of organic solvent. When eluted in several small spots, only the first two or three spots will contain the analytes, resulting in a further concentration of the sample.
       
      The column can be reused after washing it extensively with 100% acetonitrile. Depending on the size of the column and the abundance/concentration of the analyte molecules that have been loaded onto it, the column can be reused two to ten times without observing any memory effects.
       
       

    REFERENCES
     
    Gobom, J., Nordhoff, E., Ekman, R., and Roepstorff, P. 1997. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin. Int. J. Mass Spectrom. Ion Proc. 169/170: 153-163.
     
    Kussmann, M., Lassing, U., Sturmer, C.A., Przybylski, M., and Roepstorff, P. 1997. Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of the neural cell adhesion protein neurolin purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis or acidic precipitation. J. Mass Spectrom 32: 483-493. 
     
    Anyone using the procedures in this protocol does so at their own risk. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in this protocol and has no liability in connection with the use of these materials. Materials used in this protocol may be considered hazardous and should be used with caution. For a full listing of cautions regarding these material, please consult:
    Proteins and Proteomics, A Laboratory Manual, by Richard J. Simpson, ? 2003 by Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p. 482-484.



    相關文章

    科學家將人工智能技術成功用于蛋白質復合物結構預測

    蛋白質作為構成人體組織器官的支架和主要物質,在人體生命活動中起著重要作用。蛋白質的相互作用能產生許多效應,如形成特異底物作用通道、生成新的結合位點、失活、作用底物專一性和動力學變化等,細胞的代謝、信號......

    發力癌癥分子病理診斷,無錫臻和全資收購TissueofOrigin?

    2021年9月9日,無錫臻和生物科技有限公司(以下簡稱“臻和科技”)與美國VyantBio公司簽署TissueofOrigin?(以下簡稱“TOO?”)全球權益和專利轉讓協議,全資收購這款唯一獲FDA......

    這3個雜志撤回中國學者249篇文章,包含上交、中山等名校

    2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同時撤回了中國學者49篇文章。從2019年開始,Journalo......

    腫瘤治療的強心劑,中國學者開發腫瘤治療新策略

    磷酸甘油酸突變酶1(PGAM1)通過其代謝活性以及與其他蛋白質(例如α平滑肌肌動蛋白(ACTA2))的相互作用,在癌癥代謝和腫瘤進展中起關鍵作用。變構調節被認為是發現針對PGAM1的高選擇性和有效抑制......

    llumina宣布推出新型基因分型芯片|支持AllofUs研究計劃

    2018年12月6日,來自圣迭戈的消息——Illumina公司(納斯達克股票代碼:ILMN)今天宣布推出新型高密度基因分型芯片Infinium?GlobalDiversityArray。這款芯片設計源......

    SDSPAGE異常電泳現象及分析SDSPAGEHallofShame

    SDS-PAGE異常電泳現象及分析SDS-PAGEHallofShame.pdf  很不錯的東東~~推薦下~......

    Preparationofdenaturing6%

    Preparationofdenaturing6%polyacrylamidegelsformicrosatelliteanalysis(alsoforSSAP,high-resolutionIRAP......

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载