• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 應用

    WGS正在成為NGS中最廣泛的應用。通過該技術并且結合生物學應用,研究人員可以獲得基因組信息中最值得注意的信息73。舉例來說,2012年,Ellis等報道了基因與乳腺癌患者芳香酶抑制劑(aromatase inhibitor)治療法之間的關聯。他們指出突變,后果與診斷之間的關聯,同樣還有癌癥相關基因的突變的富集。這提供了一個可能性,即:乳腺癌有不同的突變造成不同的表型,具有復雜的病理學75。最近的NGS平臺的改進使得研究人員發現了一些幾年前難以想象的新觀點與機會。在2010年,1000基因組計劃(1000 genomes project)開放了其從179個個體中獲得的WGS原始數據以及697個個體的測序數據76。到2015年,研究人員已經構建了26個不同人群的2504個人的基因組群體77,78。給人們從種群的角度來觀察人類的變異。但這還不是該項目的終點,越來越多的人的基因組正在被得以測序79-81。種群水平的測序已經成為人們更好的理解人類疾病的一個重要的工具,同樣也得到了意想不到的結果。一個例子是,Sidore等82對2120個撒丁島人(Sardinians)的WGS研究發現了一些新的和脂肪相關的基因以及炎癥的標志物,給人們對血液膽固醇的分子機制的研究提供了新思路。

    全外顯子組測序(Whole-exome and targeted sequencing)83同樣也廣泛應用于測序的研究中。受制于基因組材料大小的局限,很更多的個人樣本可以在一個測序中實現,增加了基因組研究的寬度以及深度。使用外顯子測序,Iossifov84等對超過2500個單一的家庭進行測序,每個家庭都有一個小孩患有自閉癥(autism spectrum disorder, ASD)。研究人員在30%的樣本中發現了錯意突變(missense mutations),基因干擾的突變(gene-disrupting mutations)以及拷貝數的變異。該工作與其他的工作一道鑒定到了ASD相關的基因突變85,86。其他證據表明,高覆蓋度的WGS也可以解決復雜的變異以及臨床樣本的分析。2015年,Griffith等認為可以使用一個完美的跨平臺的方法(包含靶向測序)來鑒定腫瘤中高可信度的SNPs。該方法中,作者認為10000×的覆蓋度可以鑒定到稀有突變。由于10000×的覆蓋度對于WGS而言實在過高,靶向測序便在臨床中得到了廣泛的應用。

     NGS同樣在基因的調控研究中有廣泛的應用。蛋白-DNA互作可以通過染色質免疫共沉淀結合NGS測序(ChIP-seq)來得以研究41。利用NGS對修飾堿基的研究也是可行的。舉例來說,甲基化測序包含了甲基化DNA的捕獲與富集88,對甲基化與非甲基化區段的選擇性消化89,90,91。但是,盡管利用此方法獲得了很多重大的發現,修飾與捕獲過程成為其最大的限制。2010年,Flusberg等92發表了一個概念性的研究方法,即:使用PacBio來區分甲基化與非甲基化的堿基。由于聚合酶即便是甲基化的堿基也能夠延伸,但在甲基化位點上會停留更多的時間,因此這里改變的信號可以認為含有甲基化修飾。與之相同的是,nanopore平臺也能夠監測修飾的堿基,因為甲基化同樣會影響鑒定到的電壓的變化。這使得甲基化的測序可以在不需要化學操作的條件下進行93。

    一個最近的NGS的范例是對長鏈DNA的測序。重復序列以及復合序列長久以來較難以拼接,短讀長測序很難解決這個問題94-96。最近,Chaisson等97對長讀長測序的使用使得其能夠在人類GRCh37數據庫中提交超過1Mb的新的序列,這些序列彌補甚至跨越了曾經的溝。Chaisson等還鑒定到了大于26000個超過50bp的indels,也因此,GRCh37數據庫成為最有參考價值的幾個基因組之一。除了簡單的增加基因組數據可靠性之外,長讀長還能夠提供更有效的臨床診斷98-100。

    在對轉錄水平上的研究也因為NGS受益匪淺。今天,研究人員甚至能夠使用NGS的深度測序對單個轉錄本進行研究。2014年,Treutlein等101使用了組織發育過程中不同細胞類群的單細胞RNA測序發現了用于鑒定細胞亞群的標志物。盡管長讀長測序相對而言在對轉錄本的定量上不占優勢,但是,長讀長可以在研究轉錄組的結構上有所幫助51。舉例來說,最近的人類長讀長轉錄組測序研究表明 >10%的reads是新的可變剪切體102。

     NGS最新的設備——nanopore測序儀,依然在尋找其定位的過程中。然而,研究人員正在將其快速的文庫制備,實時的數據生產以及小的體積的優勢轉變為資本過程中。最近,英國Stanley Royd Hospital的研究人員使用MinION用于監測沙門氏菌(Salmonella enterica)的爆發103。MinION測序儀最令人振奮的應用可能就是2014年的埃博拉病毒爆發104。在位于日內瓦的歐洲移動實驗室的主持下,作者對埃博拉病毒的傳播以及進化歷史進行了深入的研究。

    結尾
    我們正處在新的NGS技術革命的頂端。NGS現在已經不僅僅只是一個新奇的事物,而已經成為了一個在生物學研究中廣泛應用的技術。最新的超高通量測序儀已經將曾經認為不可能的事情成為可能。這包含了首創的精準醫療(medicine initiatives)以及Illumina計劃的對循環腫瘤DNA(circulating tumour DNA, ctDNA)進行測序。每個計劃都對數萬個基因組樣本進行測序。所以,快速以及低成本的測序給予了內科醫生強大的工具來翻譯基因組信息成為有用的臨床診斷結果。

    這個革命也帶來了新的挑戰。由于NGS旨在廣泛的應用于臨床,時間就成為一個NGS首先需要面對的挑戰。對于那些嚴重的神經性疾病或者極為危險的癌癥患者而言,數周的WGS分析的等待時間足以使的患者錯過最佳的治療時間。對于急性感染而言,這些事件已經下降到幾天。盡管人們已經對時間做出了巨大的改進,但是絕大多數現有的系統都不能完全滿足快速模式下的足夠產出。

    雖然臨床診斷面臨著數據量不夠的問題,NGS其他方面的應用卻面臨著生產力過剩的境地。目前,已有超過14000個基因組序列上傳到US National Center for Biotechnology Information(NCBI)中。2013年,Schatz與Langmead報道了全世界每年可以生產超過15pb的數據量,并且數量與通量依然在繼續增加107。數據量的富余對分析以及其下游提出了嚴峻的挑戰,這需要革命性的存儲與生信解決方案108。將海量的數據量翻譯成有生物學與遺傳學內涵的結果同樣也是一個挑戰87,109,110。在臨床診斷方面,通過NGS分析的數據產生的假陽性或者假陰性同樣也是需要慎重考慮的問題111,112。

    最近,Illumina由于NGS與其周邊產品獲得了巨大的成功。其它生產商也在快速革新自身的產品113。Illumina的市場仍然在增長,以至于優勢巨大。BGISEQ-500以及Helicos technology的GenoCare114在亞洲也有所斬獲。ONT PromethION115與Illumina HiSeq X系列則向著成本與產量的極限大步邁進。隨著人們對臨床診斷測序興趣的增加,已有的NGS供應商正在提供各種快速的解決方案,如Ion Torrent S5以及Illumina的MiniSeq,還有新加入者Qiagen的GeneReader也來參與競爭。

    今后的幾年里,更多的玩家也會帶著心得解決方案進入這個市場。GenapSys (Sigma-Aldrich)的electronic ‘lunchbox’-sized sequencer116; Genia (Roche)的新的nanopore測序方案117; 以及單通道CMOS技術118,都號稱能夠在臨床應用上節約足夠的時間。這些已有的和新的攪局者都有著科技革命的潛質,包括直接對RNA或者蛋白進行測序等,這些最近和未來的進步使得今天成為NGS發展的黃金時期。

    參考文獻
    1. Watson, J. D. & Crick, F. H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18, 123–131 (1953).
    2. Mardis, E. R. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 6, 287–303 (2013).
    This article provides a concise description of technological advancements supporting NGS.
    3. Wetterstrand, K. A. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute [online], http://www.genome.gov/sequencingcosts (updated 15 Jan 2016).
    4. Kircher, M. & Kelso, J. High-throughput DNA sequencing — concepts and limitations. Bioessays 32, 524–536 (2010).
    5. Veritas Genetics. Veritas genetics launches $999 whole genome and sets new standard for genetic testing — Press Release. Veritas Genetics [online], https:// www.veritasgenetics.com/documents/VG-launches-999- whole-genome.pdf (updated 4 Mar 2016).
    6. Veritas Genetics. Veritas genetics breaks $1,000 whole genome barrier — Press Release. Veritas Genetics [online], https://www.veritasgenetics.com/documents/ VG-PGP-Announcement-Final.pdf (29 Sep 2015).
    7. Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364 (2012).
    8. Dressman, D., Yan, H., Traverso, G., Kinzler, K. W. & Vogelstein, B. Transforming single DNA molecules
    into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl Acad. Sci. USA 100, 8817–8822 (2003).
    9. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).
    10. Kim, J. B. et al. Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316, 1481–1484 (2007).
    11. Leamon, J. H. et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24, 3769–3777 (2003).
    12. Fedurco, M., Romieu, A., Williams, S., Lawrence, I. & Turcatti, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res. 34, e22 (2006).
    13. Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).
    14. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).
    This paper describes the use of DNA nanoballs to achieve clonal amplification and the use of cPAL to achieve human genome sequencing as implemented by Complete Genomics (BGI).
    15. Tomkinson, A. E., Vijayakumar, S., Pascal, J. M. & Ellenberger, T. DNA ligases: structure, reaction mechanism, and function. Chem. Rev. 106, 687–699 (2006).
    16. Landegren, U., Kaiser, R., Sanders, J. & Hood, L.
    A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).
    17. Valouev, A. et al. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res. 18, 1051–1063 (2008).
    This paper describes the use of cleavable two-base-encoded probes to achieve genome-wide nucleosome mapping in Caenorhabditis elegans. This technology is implemented by Applied Biosystems (Thermo Fisher) for the SOLiD platform.
    18. Metzker, M. L. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46 (2010).
    19. Ju, J. et al. Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc. Natl Acad. Sci. USA 103, 19635–19640 (2006).
    20. Guo, J. et al. Four-color DNA sequencing with 3?-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides. Proc. Natl Acad. Sci. USA 105, 9145–9150 (2008).
    21. Timmerman, L. DNA sequencing market will exceed $20 billion, says Illumina CEO Jay Flatley.Forbes [online], http://www.forbes.com/sites/ luketimmerman/2015/04/29/qa-with-jay-flatley-ceo- of-illumina-the-genomics-company-pursuing-a-20b- market/#4dbd19943bf5 (29 Apr 2015).
    22. Karow, J. Qiagen launches GeneReader NGS System at AMP; presents performance evaluation by broad. GenomeWeb [online], https://www.genomeweb.com/ molecular-diagnostics/qiagen-launches-genereader- ngs-system-amp-presents-performance-evaluation (4 Nov 2015).
    23. Smith, D. R. & McKernan, K. Methods of producing and sequencing modified polynucleotides. US Patent 8058030 (2011).
    24. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).
    This paper describes the development of the
    first NGS technology through the use of pyrosequencing. The authors demonstrate this method through sequencing of the Mycoplasma genitalium genome.
    25. Rothberg, J. M. et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475, 348–352 (2011).
    This paper describes the first non-optical sequencing technology using a massively parallel semi-conductor device to monitor H+ release during DNA synthesis, as implemented by the Ion Torrent platform (Thermo Fisher). The authors demonstrate this technology by sequencing both bacterial and human DNA.
    26. Rieber, N. et al. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies. PLoS ONE 8, e66621 (2013).
    27. Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).
    28. Nothnagel, M. et al. Technology-specific error signatures in the 1000 Genomes Project data. Hum. Genet. 130, 505–516 (2011).
    29. Shen, Y. Sarin, S., Liu, Y., Hobert, O. & Pe’er, I. Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequencing. PLoS ONE 3, e4012 (2008).
    30. Chan, M. et al. Development of a next-generation sequencing method for BRCA mutation screening:
    a comparison between a high-throughput and a benchtop platform. J. Mol. Diagnost. 14, 602–612 (2012).
    31. Wall, J. D. et al. Estimating genotype error rates from high-coverage next-generation sequence data. Genome Res. 24, 1734–1739 (2014).
    32. Harismendy, O. et al. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 10, R32 (2009).
    33. BGI. Revolocity Whole Genome Sequencing Service — Press Release. BGI [online], http:// u70g92ptbyk941g21dd41fc4.wpengine.netdna- cdn.com/wp-content/uploads/2015/10/Global- WGSRevolocity-ENG-10-15.pdf (2015).
    34. Karow, J. BGI halts revolocity launch, cuts complete genomics staff as part of strategic shift. GenomeWeb [online], https://www.genomeweb.com/sequencing- technology/bgi-halts-revolocity-launch-cuts-complete- genomics-staff-part-strategic-shift (23 Nov 2015).
    35. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).
    This paper demonstrates the use of reversible dye-terminator chemistry for human genome sequencing. This platform is used by the Illumina suite of platforms.
    36. Dohm, J. C., Lottaz, C., Borodina, T. &
    Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105 (2008).
    37. Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res. 39, e90 (2011).
    38. Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).
    39. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).
    40. Sarin, S., Prabhu, S., O’Meara, M. M., Pe’er, I. & Hobert, O. Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat. Methods 5, 865–867 (2008).
    41. Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).
    This review provides an overview of ChIP–seq methods for detecting chromatin–DNA interactions and their importance to epigenetics research.
    42. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
    43. Brunner, A. L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res. 19, 1044–1056 (2009).
    44. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq:
    a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
    This review provides an overview of advances and challenges in techniques that are used in transcriptomic research with a specific focus in methods that use NGS technologies.
    45. Wang, X. et al. A trimming-and-retrieving alignment scheme for reduced representation bisulfite sequencing. Bioinformatics 31, 2040–2042 (2015).
    46. Qiagen. Oncology insights enabled by knowledge base- guided panel design and the seamless workflow of the GeneReader NGS system — Press Release. Qiagen [online], http://www.genereaderngs.com/PROM-9192- 001_1100403_WP_GeneReader_NGS_0116_NA.pdf (2016).
    47. Forgetta, V. et al. Sequencing of the Dutch elm disease fungus genome using the Roche/454 GS-FLX Titanium System in a comparison of multiple genomics core facilities. J. Biomol. Tech. 24, 39–49 (2013).
    48. Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).
    49. GenomeWeb. Roche shutting down 454 sequencing business. GenomeWeb [online], https://www. genomeweb.com/sequencing/roche-shutting-down- 454-sequencing-business (15 Oct 2015).
    50. Malapelle, U. et al. Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J. Clin. Pathol. 68, 64–68 (2015).
    51. Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat. Biotechnol. 32, 915–925 (2014).
    52. Life Technologies. Ion semiconductor sequencing uniquely enables both accurate long reads and paired- end sequencing. Life Technologies [online], https:// www3.appliedbiosystems.com/cms/groups/applied_ markets_marketing/documents/generaldocuments/ cms_098680.pdf (2011)
    53. Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).
    54. McCarroll, S. A. & Altshuler, D. M. Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–S42 (2007).
    55. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).
    56. Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).
    57. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).
    The authors describe the development of a real-time sequencing method using their zero-mode waveguide sensors as implemented by the Pacific Biosciences platform. The authors demonstrate the technique by sequencing synthetic DNA templates.
    58. Levene, M. J. et al. Zero-mode waveguides for single- molecule analysis at high concentrations. Science 299, 682–686 (2003).
    59. Loomis, E. W. et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the fragile X gene. Genome Res. 23, 121–128 (2013).
    60. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing.
    Nat. Nanotechnol. 4, 265–270 (2009).
    The authors demonstrate the use of a mutant alpha-hemolysin for ordered, continuous detection of free nucleotides in solution. This work provides the basis for the approach used by ONT.
    61. Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2, e00569 (2013).
    62. McCoy, R. C. et al. Illumina TruSeq synthetic long- reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS ONE 9, e106689 (2014).
    63. Schatz, M. C., Delcher, A. L. & Salzberg, S. L. Assembly of large genomes using second-generation sequencing. Genome Res. 20, 1165–1173 (2010).
    64. English, A. C. et al. Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genomics 16, 286 (2015).
    65. Carneiro, M. O. et al. Pacific Biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13, 375 (2012).
    66. Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 341 (2012).
    67. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads.
    Nat. Biotechnol. 30, 693–700 (2012).
    68. Larsen, P. A., Heilman, A. M. & Yoder, A. D. The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genomics 15, 720 (2014).
    69. Heger, M. PacBio launches higher-throughput, lower- cost single-molecule sequencing system. GenomeWeb [online], https://www.genomeweb.com/business-news/ pacbio-launches-higher-throughput-lower-cost-single- molecule-sequencing-system (01 Oct 2015).
    70. Goodwin, S. et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 25, 1750–1756 (2015).
    71. Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).
    72. Heger, M. 10X Genomics, Pacific Biosciences
    provide business updates at JP Morgan
    Healthcare Conference. GenomeWeb [online], https:// www.genomeweb.com/sequencing-technology/ 10x-genomics-pacific-biosciences-provide-business- updates-jp-morgan-healthcare (13 Jan 2016).
    73. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole- genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).
    This review provides a comprehensive overview of advances in, and challenges of using, WGS for variant discovery in human disease.
    74. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).
    75. Prat, A. & Perou, C. M. Mammary development meets cancer genomics. Nat. Med. 15, 842–844 (2009).
    76. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
    77. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
    78. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).
    79. UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015).
    80. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).
    81. Regalado, A. U.S. to develop DNA study of one million people. MIT Technology Review [online], http://www.technologyreview.com/news/534591/ us-to-develop-dna-study-of-one-million-people (30 Jan 2015).
    82. Sidore, C. et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat. Genet. 47, 1272–1281 (2015).
    83. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2015).
    This paper describes the in situ capture and selective enrichment of human exons for downstream NGS. This manuscript provides the methodological basis for whole-exome and targeted sequencing.
    84. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).
    85. O’Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).
    86. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).
    87. Griffith, M. et al. Optimizing cancer genome sequencing and analysis. Cell Syst. 1, 210–223 (2015).
    88. Rauch, C. et al. Towards an understanding of DNA recognition by the methyl-CpG binding domain 1. J. Biomol. Struct. Dyn. 22, 695–706 (2005).
    89. Oda, M. et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 37, 3829–3839 (2009).
    90. Irizarry, R. A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res. 18, 780–790 (2008).
    91. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).
    92. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).
    93. Wescoe, Z. L., Schreiber, J. & Akeson, M. Nanopores discriminate among five C5-cytosine variants in DNA. J. Am. Chem. Soc. 136, 16582–16587 (2014).
    94. Lam, E. T. et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30, 771–776 (2012).
    95. Eichler, E. E., Clark, R. A. & She, X. An assessment of the sequence gaps: unfinished business in a finished human genome. Nat. Rev. Genet. 5, 345–354 (2004).
    96. Chaisson, M. J., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).
    97. Chaisson, M. J. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).
    This article provides strong support for the utility of long-read sequencing for generating high-quality reference genomes. The authors demonstrate this by closing and/or extending gaps and resolving structural variants in the GRCh37 human reference genome.
    98. Ritz, A. et al. Characterization of structural variants with single molecule and hybrid sequencing approaches. Bioinformatics 30, 3458–3466 (2014).
    99. Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet. 16, 344–358 (2015).
    100. Kuleshov, V. et al. Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol. 32, 261–266 (2014).
    101. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).
    102. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).
    103. Quick, J. et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16, 114 (2015).
    104. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).
    105. GenomeWeb. White House announces efforts to accelerate precision medicine initiative. GenomeWeb [online], https://www.genomeweb.com/molecular- diagnostics/white-house-announces-efforts-accelerate- precision-medicine-initiative (25 Feb 2016).
    106. Illumina. Illumina forms new company to enable early cancer detection via blood-based screening — Press Release. Illumina [online], http://www.illumina.com/ company/news-center/press-releases/press-release- details.html?newsid=2127903 (10 Jan 2016).
    107. Schatz, M. C. & Langmead, B. The DNA data deluge: fast, efficient genome sequencing machines are spewing out more data than geneticists can analyze. IEEE Spectr. 50, 26–33 (2013).
    108. Pop, M. & Salzberg, S. L. Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149 (2008).
    109. Sunyaev, S. R. Inferring causality and functional significance of human coding DNA variants. Hum. Mol. Genet. 21, R10–R17 (2012).
    110. Gargis, A. S. et al. Assuring the quality of next- generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30, 1033–1036 (2012).
    111. Chrystoja, C. C. & Diamandis, E. P. Whole genome sequencing as a diagnostic test: challenges and opportunities. Clin. Chem. 60, 724–733 (2014).
    112. McGuire, A. L. et al. Point-counterpoint. Ethics and genomic incidental findings. Science 340, 1047–1048 (2013).
    113. Bowers, J. et al. Virtual terminator nucleotides for next-generation DNA sequencing. Nat. Methods 6, 593–595 (2009).
    114. Heger, M. China’s Direct Genomics unveils new targeted NGS system based on Helicos Tech for clinical use. GenomeWeb [online], https://www.genomeweb. com/business-news/chinas-direct-genomics-unveils- new-targeted-ngs-system-based-helicos-tech-clinical- use (27 Oct 2015).
    115. Karow, J. Oxford Nanopore presents details on new high-throughput sequencer, improvements to MinIon. GenomeWeb [online], https://www.genomeweb.com/ sequencing/oxford-nanopore-presents-details-new- high-throughput-sequencer-improvements-mini(16 Sep 2014).
    116. Karow, J. Sigma-Aldrich enters co-marketing
    agreement with GenapSys for Genius sequencer. GenomeWeb [online], https://www.genomeweb.com/ sequencing-technology/sigma-aldrich-enters-co- marketing-agreement-genapsys-genius-sequencer (1 Jul 2015).
    117. Roche. Roche acquires Genia Technologies to strengthen next generation sequencing pipeline — Press Release. Roche [online], http://www.roche.com/ media/store/releases/med-cor-2014-06-02.htm(2 Jun 2014).

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载