2.5 光模數轉換
隨著數字信號處理技術的飛速發展,雷達回波的信息提取基本上都在數字域完成。作為連接模擬域回波和數字信號間的橋梁,ADC在雷達接收機中發揮著重要的作用。由于ADC孔徑抖動等原因,大的模擬帶寬和高的有效位數在完全基于電子技術的ADC中難以兼得。因此,電ADC的性能往往成為限制寬帶雷達發展的瓶頸。為突破電ADC的帶寬瓶頸,具有大帶寬、抗電磁干擾能力強等諸多優點的光子技術被引入到ADC系統中,構成了光子輔助ADC,使ADC發展到新的階段。光子輔助ADC最早出現于20世紀70年代。經過40余年的發展,國內外學者提出了多種光子輔助ADC,將光子技術應用到了信號模擬預處理、采樣保持、高速實時量化等多個方面。
光域信號預處理,是指將待轉換的模擬電信號調制到光載波上,利用光器件的超大帶寬實現對模擬信號的處理,以降低信號模數變換的難度,目前主要有信號時域拉伸[88-89]和信號復制[90-91]2種形式。時域拉伸型光子輔助ADC首先利用光脈沖在色散介質中的展寬來拉伸待轉換的模擬信號,這等效為降低信號的瞬時帶寬,因而采用低速電ADC即可完成信號的采樣和量化。而信號復制型光子輔助ADC可在光域對待轉換信號或其片段進行高質量復制,再將復制所得的多個相同信號在時域或頻域展開,然后通過錯位采樣即可獲得等效采樣率的成倍提升。常用的光域信號復制方式包括時域上的多級間插[90]和復制緩存環[92],以及頻域上的基于四波混頻效應的多波長參量廣播等。
光采樣型光子輔助ADC利用激光脈沖對輸入的電信號進行采樣[93],基本結構如圖21所示。鎖模激光器輸出光脈沖經復用送入電光調制器,其強度被待轉換電信號所調制,光電探測器將光脈沖序列攜帶的電信號提取出來并送入電ADC進行量化。電ADC的高穩定度時鐘信號由鎖模激光器提供。由于電ADC的采樣速率一般較低,可以在光電探測之前對光脈沖序列進行串并變換(即解復用)。這種光采樣ADC利用了鎖模激光器輸出激光脈寬極窄,脈沖間隔時間抖動極小等特性,使傳統電ADC因孔徑抖動導致的噪聲和失真大大降低。由于電光調制器具有幾十GHz的調制帶寬,光采樣模數轉換系統只需選用市場上ENOB高但模擬帶寬較小的電ADC,便可實現高精度的射頻帶通采樣。
圖21、光采樣型光子輔助ADC 的基本結構
Fig. 21 Schematic diagram of the photonic sampled ADC
光子技術同樣可應用于模擬信號的實時量化。信號量化的本質是將待轉換信號的瞬時幅度映射成多路可供比較器進行門限判決的強度脈沖,映射所得的并行支路越多,則量化位數越高。光量化方案中的這種映射主要由并行多路電光強度調制或光孤子自頻移效應實現。在并行多路電光調制結構中,各支路具有不同的強度調制特性:不同的半波電壓[94]、有相移的相同半波電壓[95]以及二者的混合[96]。當調制端口輸入的模擬電信號變化時,各調制支路輸出的光強按不同的規律改變,經后續處理即可組合出不同的編碼。而基于光孤子自頻移效應的方案[97-98]先用待轉換電信號調制光脈沖串的幅度,再利用頻移與光脈沖幅度的關系將幅度信息映射到光波長域,最后通過光色散器件將不同波長的光分開。這種方案已經實現了6位的量化分辨率[99]。
3、結論與展望
雷達是現代戰爭中極為重要的軍事裝備,是海、陸、空、天各兵種的“眼睛”。為了擦亮這只“眼睛”,下一代雷達向著高頻率、超寬帶、多功能一體化方向發展,以期在提高距離分辨率、改善目標識別成像等諸多性能的同時,又能提高雷達的隱蔽性與抗干擾性能。微波光子技術憑借其寬帶、抗電磁干擾等特性,將逐步取代部分傳統電技術在雷達系統中發揮作用。當前該領域的研究,已經從單元研究向系統研究轉變,全面進入了雷達樣機研制和功能演示階段。但是微波光子雷達各關鍵技術的融合,系統指標的提升,轉換能效,動態范圍,可靠性等方面還需進一步提高以滿足實戰系統的需求。尤其是光電集成技術相對于純電集成技術還較初步,這必將限制微波光子雷達系統的應用范圍。但是科技因未知而美妙,因探索而精彩。通過研究人員在超低相噪光電振蕩器、超寬帶波形產生、多功能信號處理、光控真延時波束形成網絡以及各技術之間融合的探索,一定能推動微波光子雷達系統的大發展。
參考文獻(References)
[1] Skolnik M I, Radar handbook[M]. 3rd Edition. New York: McGraw-Hill, 2008: 1-24.
[2]
Chen X L, Guan J, Bao Z, et al. Detection and extraction of target with
micromotion in spiky sea clutter via short-time fractional Fourier
transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,
52(2): 1002-1018.
[3] Chen X L, Guan J, Li X Y, et al. Effective
coherent integration method for marine target with micromotion via phase
differentiation and radon-Lv's distribution[J]. IET Radar, Sonar &
Navigation, 2015, 9(9): 1284-1295.
[4] 陳小龍, 關鍵, 黃勇, 等. 雷達低可觀測目標探測技術[J]. 科技導報, 2017, 35(11): 30-38.
Chen
Xiaolong, Guan Jian, Huang Yong, et al. Radar low-observable target
detection[J]. Science & Technology Review, 2017, 35(11): 30-38.
[5]
陳小龍, 關鍵, 何友, 等. 高分辨稀疏表示及其在雷達動目標檢測中的應用[J]. 雷達學報, 2017, 6(3): 239-251.
Chen Xiaolong, Guan Jian, He You, et al. High-resolution sparse
representation and its applications in radar moving target detection[J].
Journal of Radars, 2017, 6(3): 239-251.
[6] Tavik G C, Hilterbrick C
L, Evins J B, et al. The advanced multifunction RF concept[J]. IEEE
Transactions on Microwave Theory and Techniques, 2005, 53(3):1009-1020.
[7]
Saddik G N, Singh R S, Brown E R. Ultra-wideband multifunctional
communications/radar system[J]. IEEE Transactions on Microwave Theory
and Techniques, 2007, 55(7): 1431-1437.
[8] Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.
[9] Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[10]
Pan S L, Zhu D, Zhang F Z. Microwave photonics for modern radar
systems[J]. Transactions of Nanjing University of Aeronautics and
Astronautics, 2014, 23(3): 219-240.
[11] DARPA. Our research[EB/OL]. [2017-06-30]. https://www.darpa.mil/our-research.
[12]
Community Research and Development Information Service. Projects &
results[EB/OL]. [2017-06-30].
http://cordis.europa.eu/projects/home_en.html.
[13] NASA. Deep space network (DSN) [EB/OL]. [2017-06-30]. https://
www.nasa.gov/directorates/heo/scan/services/networks/txt_dsn.html.
[14]
Goutzoulis A, Davies K, Zomp J, et al. Development and field
demonstration of a hardware-compressive fiber-optic true-time-delay
steering system for phased- array antennas[J]. Applied Optics, 1994, 33
(35): 8173-8185.
[15] Dolfi D, Joffre P, Antoine J, et al.
Experimental demonstration of a phased-array antenna optically
controlled with phase and time delays [J]. Applied Optics, 1996, 35(26):
5293-5300.
[16] Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341.
[17]
Ghelfi P, Laghezza F, Scotti F, et al. Photonics for radars operating
on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34
(2): 500-507.
[18] Melo S, Pinna S, Bogoni A, et al. Dual-use system
combining simultaneous active radar & communication, based on a
single photonics-assisted transceiver[C]//17th IEEE International Radar
Symposium (IRS). Piscataway, NJ: IEEE, 2016, doi:
10.1109/IRS.2016.7497379.
[19] Onori D, Laghezza F, Scotti F, et al.
Coherent radar/lidar integrated architecture[C]//IEEE European Radar
Conference (EuRAD). Piscataway, NJ: IEEE, 2015: 241-244.
[20] KRET
has created a sample of photonic radar for the aircraft of the 6th
generation[EB/OL]. [2017-06-30].
http://weaponews.com/news/11884-kret-has-created-a-sample-of-photonic-radar-for-the-aircraftof-the-6t.html
[21]
Fu J, Pan S. Fiber-connected UWB sensor network for high-resolution
localization using optical time-division multiplexing[J]. Optics
Express, 2013, 21(18): 21218-21223.
[22] Fu J, Zhang F, Zhu D, et al.
A photonic-assisted transceiver with wavelength reuse for distributed
UWB radar[C]//IEEE International Topical Meeting on Microwave Photonics
(MWP) and the 9th Asia-Pacific Microwave Photonics Conference (APMP).
Piscataway, NJ: IEEE, 2014: 232-234.
[23] Fu J B, Pan S L.
UWB-over-fiber sensor network for accurate localization based on optical
time-division multiplexing[C]//The 12th IEEE International Conference
on Optical Communications and Networks (ICOCN). Piscataway, NJ: IEEE,
2013, doi: 10.1109/ICOCN.2013.6617 197.
[24] Zheng J, Wang H, Fu J,
et al. Fiber-distributed ultra-wideband noise radar with steerable power
spectrum and colorless base station[J]. Optics Express, 2014, 22(5):
4896-4907.
[25] Yao T, Zhu D, Ben D, et al. Distributed MIMO chaotic
radar based on wavelength-division multiplexing technology[J]. Optics
Letters, 2015, 40(8): 1631-1634.
[26] Yao T, Zhu D, Liu S, et al.
Wavelength-division multiplexed fiberconnected sensor network for
SLource localization[J]. IEEE Photonics Technology Letters, 2014,
26(18): 1874-1877.
[27] Zhang F, Guo Q, Wang Z, et al.
Photonics-based broadband radar for high- resolution and real- time
inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14):
16274-16281.
[28] Li R, Li W, Ding M, et al. Demonstration of a
microwave photonic synthetic aperture radar based on photonic-assisted
signal generation and stretch processing[J]. Optics Express, 2017,
25(13): 14334-14340.
[29] Xiao X, Li S, Chen B, et al. A microwave
photonics-based inverse synthetic aperture radar system[C]//CLEO:
Science and Innovations. New York: Optical Society of America, 2017:
JW2A. 144.
[30] Zou W W, Zhang S T, Wu K, et al. All-optical
central-frequency-programmable and bandwidth-tailorable radar[C]//URSI
Asia-Pacific Radio Science Conference. Piscataway, NJ: IEEE, 2016,
doi:10.1109/URSIAP-RASC.2016.7883546.
[31] Yao X S, Maleki L. Converting light into spectrally pure microwave oscillation[J]. Optics Letters, 1996, 21(7): 483-485.
[32]
Bagnell M, Davila-Rodriguez J, Delfyett P J. Millimeter-wave generation
in an optoelectronic oscillator using an ultrahigh finesse etalon as a
photonic filter[J]. Journal of Lightwave Technology, 2014, 32(6):
1063-1067.
[33] Peng H, Zhang C, Xie X, et al. Tunable DC-60 GHz RF
generation utilizing a dual-loop optoelectronic oscillator based on
stimulated Brillouin scattering[J]. Journal of Lightwave Technology,
2015, 33(13): 2707-2715.
[34] Pan S, Yao J. A frequency-doubling
optoelectronic oscillator using a polarization modulator[J]. IEEE
Photonics Technology Letters, 2009, 21 (13): 929-931.
[35] Zhu D, Pan
S, Ben D. Tunable frequency-quadrupling dual-loop optoelectronic
oscillator[J]. IEEE Photonics Technology Letters, 2012, 24 (3): 194-196.
[36]
Zhu D, Liu S, Ben D, et al. Frequency-quadrupling optoelectronic
oscillator for multichannel upconversion[J]. IEEE Photonics Technology
Letters, 2013, 25(5): 426-429.
[37] Devgan P S, Urick V J, Diehl J F,
et al. Improvement in the phase noise of a 10 GHz optoelectronic
oscillator using all-photonic gain[J]. Journal of Lightwave Technology,
2009, 27(15): 3189-3193.
[38] Yao X S, Maleki L. Multiloop optoelectronic oscillator[J]. IEEE Journal of Quantum Electronics, 2000, 36(1): 79-84.
[39]
Cai S, Pan S, Zhu D, et al. Coupled frequency-doubling optoelectronic
oscillator based on polarization modulation and polarization
multiplexing[J]. Optics Communications, 2012, 285(6): 1140-1143.
[40]
Yang B, Jin X, Zhang X, et al. A wideband frequency-tunable
optoelectronic oscillator based on a narrowband phase-shifted FBG and
wavelength tuning of laser[J]. IEEE Photonics Technology Letters, 2012,
24(1): 73-75.
[41] Ozdur I, Mandridis D, Hoghooghi N, et al. Low
noise optically tunable opto-electronic oscillator with Fabry–Perot
etalon[J]. Journal of Lightwave Technology, 2010, 28(21): 3100-3106.
[42] Maleki L. Sources: The optoelectronic oscillator[J]. Nature Photonics, 2011, 5(12): 728-730.
[43]
Yao X S, Davis L, Maleki L. Coupled optoelectronic oscillators for
generating both RF signal and optical pulses[J]. Journal of Lightwave
Technology, 2000, 18(1): 73-78.
[44] Zhou W, Blasche G.
Injection-locked dual opto-electronic oscillator with ultra- low phase
noise and ultra- low spurious level[J]. IEEE Transactions on Microwave
Theory and Techniques, 2005, 53(3): 929-933.
[45] OEwave Corporation[EB/OL]. [2017-06-30]. http://www.oewaves.com.
[46]
Eliyahu D, Sariri K, Taylor J, et al. Optoelectronic oscillator with
improved phase noise and frequency stability[C]//Proceedings of SPIE:
Photonic Integrated Systems. New York: SPIE, 2003, doi:10.1117/
12.475834.
[47] Lou C, Huo L, Chang G, et al. Experimental study of
clock division using the optoelectronic oscillator[J]. IEEE Photonics
Technology Letters, 2002, 14(8): 1178-1180.
[48] Yang J, Yu J L, Wang
Y T, et al. An optical domain combined dualloop optoelectronic
oscillator[J]. IEEE Photonics Technology Letters, 2007, 19(11): 807-809.
[49]
Rashidinejad A, Weiner A M. Photonic radio-frequency arbitrary waveform
generation with maximal time-bandwidth product capability [J]. Journal
of Lightwave Technology, 2014, 32(20): 3383-3393.
[50] Wang C, Yao J.
Photonic generation of chirped millimeter-wave pulses based on
nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg
grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2008,
56(2): 542-553.
[51] Ye J, Yan L, Pan W, et al. Two-dimensionally
tunable microwave signal generation based on optical frequency-to-time
conversion[J]. Optics letters, 2010, 35(15): 2606-2608.
[52] Zhang F,
Ge X, Pan S. Background-free pulsed microwave signal generation based
on spectral shaping and frequency-to-time mapping[J]. Photonics
Research, 2014, 2(4): B5-B10.
[53] Simpson T B, Liu J M, Huang K F,
et al. Nonlinear dynamics induced by external optical injection in
semiconductor lasers[J]. Quantum and Semiclassical Optics: Journal of
the European Optical Society Part B, 1997, 9(5): 765.
[54] Zhou P,
Zhang F, Guo Q, et al. Linearly chirped microwave waveform generation
with large time- bandwidth product by optically injected semiconductor
laser[J]. Optics Express, 2016, 24(16): 18460-18467.
[55] Zhou P,
Zhang F, Ye X, et al. Flexible frequency-hopping microwave generation by
dynamic control of optically injected semiconductor laser [J]. IEEE
Photonics Journal, 2016, 8(6): 1-9.
[56] Zhou P, Zhang F, Guo Q, et
al. Reconfigurable radar waveform generation based on an optically
injected semiconductor laser[J]. IEEE Journal of Selected Topics in
Quantum Electronics, 2017, 23(6), doi: 10.1109/JSTQE.2017.2699259.
[57]
Li W, Wang W T, Sun W H, et al. Photonic generation of arbitrarily
phase-modulated microwave signals based on a single DDMZM[J]. Optics
Express, 2014, 22(7): 7446-7457.
[58] Jiang H Y, Yan L S, Ye J, et al. Photonic generation of phase-coded
microwave signals with tunable carrier frequency[J]. Optics Letters, 2013, 38(8): 1361-1363.
[59]
Li W, Kong F, Yao J. Arbitrary microwave waveform generation based on a
tunable optoelectronic oscillator[J]. Journal of Lightwave Technology,
2013, 31(23): 3780-3786.
[60] Zhang Y, Pan S. Generation of
phase-coded microwave signals using a polarization-modulator-based
photonic microwave phase shifter[J]. Optics Letters, 2013, 38(5):
766-768.
[61] Zhang Y, Zhang F, Pan S. Generation of
frequency-multiplied and phase-coded signal using an optical
polarization division multiplexing modulator[J]. IEEE Transactions on
Microwave Theory and Techniques, 2017, 65(2): 651-660.
[62] Zhang Y,
Ye X, Guo Q, et al. Photonic generation of linear-frequency modulated
waveforms with improved time-bandwidth product based on polarization
modulation[J]. Journal of Lightwave Technology, 2017, 35(10): 1821-1829.
[63]
Kanno A, Kawanishi T. Broadband frequency-modulated continuous wave
signal generation by optical modulation technique[J]. Journal of
Lightwave Technology, 2014, 32(20): 3566-3572.
[64] Guo Q, Zhang F,
Zhou P, et al. Dual-band LFM signal generation by optical frequency
quadrupling and polarization multiplexing[J]. IEEE Photonics Technology
Letters, 2017, 29(16): 1320-1323.
[65] Yacoubian A, Das P K.
Digital-to-analog conversion using electrooptic modulators[J]. IEEE
Photonics Technology Letters, 2003, 15(1): 117-119.
[66] Saida T,
Okamoto K, Uchiyama K, et al. Integrated optical digital-toanalogue
converter and its application to pulse pattern recognition[J].
Electronics Letters, 2001, 37(20): 1237-1238.
[67] Liao J, Wen H,
Zheng X, et al. Novel bipolar photonic digital-to-analog conversion
employing differential phase shift keying modulation and balanced
detection[J]. IEEE Photonics Technology Letters, 2013, 25(2): 126-128.
[68]
Gao B, Zhang F, Pan S. Experimental demonstration of arbitrary waveform
generation by a 4-bit photonic digital-to-analog converter[J]. Optics
Communications, 2017, 383: 191-196.
[69] Zou X, Pan W, Luo B, et al.
Photonic approach for multiple-frequency-component measurement using
spectrally sliced incoherent source [J]. Optics Letters, 2010, 35(3):
438-440.
[70] Wang W, Davis R L, Jung T J, et al. Characterization of
a coherent optical RF channelizer based on a diffraction grating[J].
IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10):
1996-2001.
[71] Gu X, Zhu D, Li S, et al. Photonic RF channelization
based on seriescoupled asymmetric double-ring resonator filter[C]//The
7th IEEE International Conference on Advanced Infocomm Technology
(ICAIT). Piscataway, NJ: IEEE, 2014: 240-244.
[72] Austin M W.
Integrated optical microwave channeliser[C]//The IEEE Asia
Communications and Photonics Conference and Exhibition (ACP).
Piscataway, NJ: IEEE, 2009, doi: 10.1364/ACP.2009.ThE5.
[73] Xie X,
Dai Y, Xu K, et al. Broadband photonic RF channelization based on
coherent optical frequency combs and I/Q demodulators[J]. IEEE Photonics
Journal, 2012, 4(4): 1196-1202.
[74] Tang Z Z, Zhu D, Pan S L.
Coherent RF channelizer based on dual optical frequency combs and
image-reject mixers[C]. International Topical Meeting on Microwave
Photonics (MWP 2017), Beijing, October 23-26, 2017.
[75] Zhu D, Chen W
J, Chen Z W, et al. RF front-end based on microwave photonics[C]. The
12th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), the
22nd OptoElectronics and Communications Conference (OECC), and the 5th
Photonics Global Conference (PGC), Singapore, July 31-August 4, 2017.
[76]
Yi X, Huang T X H, Minasian R. Photonic beamforming based on
programmable phase shifters with amplitude and phase control[J]. IEEE
Photonics Technology Letters, 2011, 23(18): 1286-1288.
[77] Zhang Y,
Wu H, Zhu D, et al. An optically controlled phased array antenna based
on single sideband polarization modulation[J]. Optics Express, 2014,
22(4): 3761-3765.
[78] 張光義. 相控陣雷達瞬時帶寬的幾個問題[J]. 現代雷達, 1990, 12 (4):
1-10. Zhang Guangyi. Several problems of phased array radar
instantaneous bandwidth[J]. Modern Radar, 1990, 12(4): 1-10.
[79]
Dolfi D, Joffre P, Antoine J, et al. Experimental demonstration of a
phased-array antenna optically controlled with phase and time delays
[J]. Applied Optics, 1996, 35(26): 5293-5300.
[80] Yi X, Li L, Huang T
X H, et al. Programmable multiple true-time-delay elements based on a
Fourier-domain optical processor[J]. Optics Letters, 2012, 37(4):
608-610.
[81] Aryanfar I, Marpaung D, Choudhary A, et al. Chip-based
Brillouin radio frequency photonic phase shifter and wideband time
delay[J]. Optics Letters, 2017, 42(7): 1313-1316.
[82] Zhuang L,
Marpaung D, Burla M, et al. Low-loss, high-index-contrast Si3N4/SiO2
optical waveguides for optical delay lines in microwave photonics signal
processing[J]. Optics Express, 2011, 19(23): 23162-23170.
[83] Song
Y, Li S, Zheng X, et al. True time-delay line with high resolution and
wide range employing dispersion and optical spectrum processing[J].
Optics Letters, 2013, 38(17): 3245-3248.
[84] Ye X, Zhang F, Pan S. Optical true time delay unit for multi-beamforming[J]. Optics Express, 2015, 23(8): 10002-10008.
[85]
Subbaraman H, Chen M Y, Chen R T. Photonic crystal fiber-based
true-time-delay beamformer for multiple RF beam transmission and
reception of an X-band phased-array antenna[J]. Journal of Lightwave
Technology, 2008, 26(15): 2803-2809.
[86] Ye X, Zhang F, Pan S.
Compact optical true time delay beamformer for a 2D phased array antenna
using tunable dispersive elements[J]. Optics Letters, 2016, 41(17):
3956-3959.
[87] Ye X, Zhang B, Zhang Y, et al. Performance evaluation
of optical beamforming- based wideband antenna array[J]. Chinese Optics
Letters, 2017, 15(1): 010013.
[88] Fard A M, Gupta S, Jalali B.
Photonic time-stretch digitizer and its extension to real-time
spectroscopy and imaging[J]. Laser & Photonics Reviews, 2013, 7(2):
207-263.
[89] Ye X, Zhang F, Pan S. Photonic time-stretched
analog-to-digital converter with suppression of dispersion-induced power
fading based on polarization modulation[C]//IEEE Photonics Conference
(IPC). Piscataway, NJ: IEEE, 2014: 218-219.
[90] Johnstone A, Lewis M
F, Hares J D, et al. High-speed optp-electronic transient waveform
digitiser[J]. Computer Standards & Interfaces, 2001, 23(2): 73-84.
[91]
Zhang X, Kang Z, Yuan J, et al. Scheme for multicast parametric
synchronous optical sampling[J]. Optical Engineering, 2014, 53(5):
056102-056102.
[92] Zhu X, Zhu D, Pan S L. A photonic
analog-to-digital converter with multiplied sampling rate using a fiber
ring[C]. International Topical Meeting on Microwave Photonics (MWP
2017), Beijing, China, October 23-26, 2017.
[93] Khilo A, Spector S
J, Grein M E, et al. Photonic ADC: Overcoming the bottleneck of
electronic jitter[J]. Optics Express, 2012, 20(4): 4454-4469.
[94] Taylor H F. An electrooptic analog-to-digital converter[J]. Proceedings of the IEEE, 1975, 63(10): 1524-1525.
[95]
Wu Q, Zhang H, Peng Y, et al. 40 GS/s optical analog-to-digital
conversion system and its improvement[J]. Optics Express, 2009, 17(11):
9252-9257.
[96] Wang Y, Zhang H M, Wu Q W, et al. Improvement of
photonic ADC based on phase-shifted optical quantization by using
additional modulators[J]. IEEE Photonics Technology Letters, 2012,
24(7): 566-568.
[97] Konishi T, Tanimura K, Asano K, et al.
All-optical analog-to-digital converter by use of self-frequency
shifting in fiber and a pulse-shaping technique[J]. Optical Society of
America Journal B, 2002, 19(11): 2817-2823.
[98] Nagashima T,
Hasegawa M, Konishi T. 40 G sample/s all-optical analog to digital
conversion with resolution degradation prevention[J]. IEEE Photonics
Technology Letters, 2017, 29(1): 74-77.
[99] Takahashi K, Matsui H,
Nagashima T, et al. Resolution upgrade toward 6-bit optical quantization
using power-to-wavelength conversion for photonic analog-to-digital
conversion[J]. Optics Letters, 2013, 38 (22): 4864-4867.
作者:潘時龍,張亞梅。南京航空航天大學電子信息工程學院,雷達成像與微波光子技術教育部重點實驗室