• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 核磁共振譜技術的歷史簡介

    核磁共振波譜法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。 核磁共振現象于1946年由E.M.珀塞耳和F.布洛赫等人發現。目前核磁共振迅速發展成為測定有機化合物結構的有力工具。目前核磁共振與其他儀器配合,已鑒定了十幾萬種化合物。70年代以來,使用強磁場超導核磁共振儀,大大提高了儀器靈敏度,在生物學領域的應用迅速擴展。脈沖傅里葉變換核磁共振儀使得13C、15N等的核磁共振得到了廣泛應用。計算機解譜技術使復雜譜圖的分析成為可能。測量固體樣品的高分辨技術則是尚待解決的重大課題。 核磁共振技術可以提供分子的化學結構和分子動力學的信息,已成為分子結構解析以及物質理化性質表征的常規技術手段,在物理、化學、生......閱讀全文

    核磁共振譜技術的歷史簡介

      核磁共振波譜法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。  核磁

    核磁共振譜的簡介

      核磁共振技術是有機物結構測定的有力手段,不破壞樣品,是一種無損檢測技術。從連續波核磁共振波譜發展為脈沖傅立葉變換波譜,從傳統一維譜到多維譜,技術不斷發展,應用領域也越廣泛。核磁共振技術在有機分子結構測定中扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為“四大名譜”

    核磁共振譜的簡介

      核磁共振技術是有機物結構測定的有力手段,不破壞樣品,是一種無損檢測技術。從連續波核磁共振波譜發展為脈沖傅立葉變換波譜,從傳統一維譜到多維譜,技術不斷發展,應用領域也越廣泛。核磁共振技術在有機分子結構測定中扮演了非常重要的角色,核磁共振譜與紫外光譜、紅外光譜和質譜一起被有機化學家們稱為“四大名譜”

    核磁共振譜的原理簡介

      根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:  1)中子數和質子數均為偶數的原子核,自旋量子數為0;  2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);  3)

    簡述核磁共振技術的發展歷史

      核磁共振技術的歷史   1930年代,物理學家伊西多·拉比發現在磁場中的原子核會沿磁場方向呈正向或反向有序平行排列,而施加無線電波之后,原子核的自旋方向發生翻轉。這是人類關于原子核與磁場以及外加射頻場相互作用的最早認識。由于這項研究,拉比于1944年獲得了諾貝爾物理學獎。  1946年兩位美國科

    簡介極譜儀的發展歷史

      捷克化學家海洛夫斯基領導開發出第一代極譜儀以來已近百年,在我國第一代極譜儀為1883出生于50年代,這種連續快速滴汞的儀器至今仍用于教育與演示極譜分析基本原理。以 單滴汞電極為工作電極,在汞滴產生后期最后2秒完成一次掃描的極譜分析方法(簡稱單掃極譜法) 稱之為近代極譜,在我國上世紀六十年代仿制國

    關于極譜儀歷史發展的簡介

      捷克化學家海洛夫斯基領導開發出第一代極譜儀以來已近百年,在我國第一代極譜儀為1883出生于50年代,這種連續快速滴汞的儀器至今仍用于教育與演示極譜分析基本原理。以 單滴汞電極為工作電極,在汞滴產生后期最后2秒完成一次掃描的極譜分析方法(簡稱單掃極譜法) 稱之為近代極譜,在我國上世紀六十年代仿制國

    關于干燥技術的歷史簡介

      二次世界大戰以后,軍隊和政府開始廣泛地進行有關脫水食品的實驗。當時,人們對于脫水食品的味道和營養就有了更大的期望,大家都指望有一種更好的方法,使食品保存得更長久一些,同時,人們對食用方便性也有了更高的要求,既要保存原味、質地,又要保留營養成份,但是,人們的要求又與科學技術所能達到的水平有一定的距

    膜分離技術的歷史簡介

      膜分離現象廣泛存在于自然界中,特別是生物體內,但人類對它的認識和研究卻經過了漫長而曲折的道路。膜分離技術的工程應用是從20世紀60年代海水淡化開始的1960年洛布和索里拉金教授制成了第一張高通量和高脫鹽率的醋酸纖紙素膜,這種膜具有對稱結構,從此使反滲透從實驗室走向工業應用。  其后各種新型膜陸續

    關于PCR技術的歷史簡介

      Khorana (1971)等最早提出核酸體外擴增的設想:“經DNA變性,與合適的引物雜交,用DNA聚合酶延伸引物,并不斷重復該過程便可合成tRNA基因。”  但由于當時基因序列分析方法尚未成熟,熱穩定DNA聚合酶尚未報道以及引物合成的困難,這種想法似乎沒有實際意義。加上70年代初分子克隆技術的

    核磁共振技術的原理簡介

      核磁共振技術可以直接研究溶液和活細胞中相對分子質量較小(20,000 道爾頓以下)的蛋白質、核酸以及其它分子的結構, 而不損傷細胞。  核磁共振的基本原理是:原子核有自旋運動,在恒定的磁場中,自旋的原子核將繞外加磁場作回旋轉動, 叫進動(precession)。進動有一定的頻率,它與所加磁場的強

    關于質譜技術的發展歷史介紹

      早在19世紀末,E.Goldstein在低壓放電實驗中觀察到正電荷粒子,隨后W.Wein發現正電荷粒子束在磁場中發生偏轉,這些觀察結果為質譜的誕生提供了準備。  世界上第一臺質譜儀于1912年由英國物理學家Joseph John Thomson(1906年諾貝爾物理學獎獲得者、英國劍橋大學教授)

    固體核磁共振技術簡介

      固體核磁共振技術(SSNMR,Solid State Nuclear MagneticResonance)是以固態樣品為研究對象的分析技術。將樣品分子視為一個整體,則可將固體核磁中探測到的相互作用分為兩大類:樣品內部的相互作用及由外加環境施加于樣品的作用。前者主要是樣品內在的電磁場在與外加電磁場

    轉基因技術的發展歷史簡介

      1974年,波蘭遺傳學家斯吉巴爾斯基(Waclaw Szybalski)稱基因重組技術為合成生物學概念,1978年,諾貝爾醫學獎頒給發現DNA限制酶的納森斯(Daniel Nathans)、亞伯(Werner Arber)與史密斯(Hamilton Smith)時,斯吉巴爾斯基在《基因》期刊中寫

    核磁共振譜儀核磁共振譜儀的組成部分

    通常是用電磁鐵和永久磁鐵產生均勻而穩定的磁場B。在兩磁極之間安裝一個探頭,探頭中央插入試樣管。試樣管在壓縮空氣的推動下,勻速而平穩地回旋。射頻振蕩器線圈安裝在探頭中,產生一定頻率的射頻輻射以激發核。它所產生的射頻場必須與磁場方向垂直。射頻接收線圈也安裝在探頭中,以來探測核磁共振時的吸收信號。另有一組

    核磁共振波譜儀的發展歷史

    1946年,哈佛大學珀賽爾用吸收法首次觀測到石蠟中質子的核磁共振(NMR),幾乎同時美國斯坦福大學布洛赫(F.Block)用感應法發現液態水的核磁共振現象。因此,他們分享了1952年的諾貝爾物理學獎金。核磁共振的方法與技術作為分析物質的手段,由于其可深入物質內部而不破壞樣品,核磁共振波譜儀具有迅速、

    核磁共振成像發展歷史

    核磁共振成像術,簡稱核磁共振、磁共振或核磁,是80年代發展起來的一種全新的影像檢查技術。它的全稱是:核磁共振電子計算機斷層掃描術(簡稱MRl)是利用核磁共振成像技術進行醫學診斷的一種新穎的醫學影像技術。核磁共振是一種物理現象,早在1946年就被美國的布勞克和相塞爾等人分別發現,作為一種分析手段廣泛應

    核磁共振譜的簡史

      核磁共振現象于1946年由E.M.珀塞耳和F.布洛赫等人發現。目前核磁共振迅速發展成為測定有機化合物結構的有力工具。目前核磁共振與其他儀器配合,已鑒定了十幾萬種化合物。70年代以來,使用強磁場超導核磁共振儀,大大提高了儀器靈敏度,在生物學領域的應用迅速擴展。脈沖傅里葉變換核磁共振儀使得13C、1

    核磁共振譜的原理

      根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:  1)中子數和質子數均為偶數的原子核,自旋量子數為0;  2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);  3)

    核磁共振譜的應用

      核磁共振技術在有機合成中,不僅可對反應物或產物進行結構解析和構型確定,在研究合成反應中的電荷分布及其定位效應、探討反應機理等方面也有著廣泛應用。核磁共振波譜能夠精細地表征出各個氫核或碳核的電荷分布狀況,通過研究配合物中金屬離子與配體的相互作用,從微觀層次上闡明配合物的性質與結構的關系,對有機合成

    深度揭秘氦質譜檢漏技術——氦質譜檢漏技術歷史及原理

    一、氦質譜檢漏技術的發展歷史第二次世界大戰中期,美國為了制造原子彈,在田納西州的橡樹嶺(Oak Ridge)建立的大規模分離鈾-235的工廠。為了探測電磁分離器真空系統中的漏孔,1943年由明尼蘇達州大學的A.O.C.Nier設計了世界上第一臺具有簡易氣體分析器的玻璃外殼的質譜檢測儀。它使用一個熱燈

    關于細胞融合技術的歷史發展簡介

      19世紀30年代,科學家們相繼在肺結核,天花,水痘,麻疹等疾病患者的病理組織中觀察到多核細胞。  19世紀70年代,科學家們在蛙的血細胞中也看到了多核細胞的現象,但是當時科學發展水平的限制,沒有給予足夠重視。  1962年,日本科學家發現日本血凝型病毒能引起艾氏腹水瘤細胞融合的現象。  1965

    電子顯微技術的簡介和歷史發展

      電子顯微技術是一種利用高分辨率和放大倍率的電子顯微鏡(SEM)對材料進行特征分析如形貌觀察、能量色散X射線分析等分析的技術。 電子顯微技術在計量分析測定、立體觀察、圖像分析、電子工業、缺陷探測等領域都有著廣泛的應用。  簡介  20世紀重大發明之一。  1986年諾貝爾物理學獎授予了電子顯微鏡的

    極譜儀的歷史

      捷克化學家海洛夫斯基領導開發出第一代極譜儀以來已近百年,在我國第一代極譜儀為1883出生于50年代,這種連續快速滴汞的儀器至今仍用于教育與演示極譜分析基本原理。以 單滴汞電極為工作電極,在汞滴產生后期最后2秒完成一次掃描的極譜分析方法(簡稱單掃極譜法) 稱之為近代極譜,在我國上世紀六十年代仿制國

    關于核磁共振譜的分類

      有兩大類:高分辨核磁共振譜儀和寬譜線核磁共振譜儀。高分辨核磁共振譜儀只能測液體樣品,譜線寬度可小于1赫,主要用于有機分析。寬譜線核磁共振譜儀可直接測量固體樣品,譜線寬度達10赫,在物理學領域用得較多。高分辨核磁共振譜儀使用普遍,通常所說的核磁共振譜儀即指高分辨譜儀。  按譜儀的工作方式可分連續波

    影響碳的核磁共振譜和質子核磁共振譜化學位移因素

    化學位移是由屏蔽作用所引起的共振時磁場強度的移動現象.所以位移的大小與氫核(或碳核)所處的化學環境有關.影響氫核的位移因素有:1、電負性.與質子連接的原子電負性越大,質子信號就在越低的磁場出現2、磁各向異性效應.分子中之子與某一官能團的關系會影響質子的化學位移,可以是反磁屏蔽,可以是順磁屏蔽,情況比

    質譜儀的歷史簡介

      早期的質譜儀主要是用來進行同位素測定和無機元素分析,二十世紀四十年代以后開始用于有機物分析,六十年代出現了氣相色譜-質譜聯用儀,使質譜儀的應用領域大大擴展,開始成為有機物分析的重要儀器。  計算機的應用又使質譜分析法發生了巨大變化,使其技術更加成熟,使用更加方便。  八十年代以后又出現了一些新的

    核磁共振譜圖解析

    這個是個掉書袋的工作啊,難度不大,但是內容很多。至少需要掌握官能團對化學位移的影響和解耦合現象。通過化學位移解析官能團,通過耦合產生的能級裂分推斷結構中各原子之間的連接關系。這個可以一門學分至少2的課。一時半會說不清啊。chemoffice可以模擬核磁譜,如果你只是為了論文作圖,不妨試試看。想了解的

    核磁共振氫譜實驗

    實驗方法原理1、核磁共振的概念具有磁性的原子核,處在某個外加靜磁場中,受到特定頻率的電磁波的作用,在它的磁能級之間發生的共振躍遷現象,叫核磁共振現象。2、核磁共振的共振條件①:具有磁性的原子核。(γ:某種核的磁旋比)②:外加靜磁場(H0)中)。③:一定頻率(υ)的射頻脈沖。④:公式:?3、 化學位移

    核磁共振譜怎么分析

    之間的能量差為△E。一個核要從低能態躍遷到高能態,必須吸收△E的能量。讓處于外磁場中的自旋核接受一定頻率的電磁波輻射,當輻射的能量恰好等于自旋核兩種不同取向的能量差時,處于低能態的自旋核吸收電磁輻射能躍遷到高能態。這種現象稱為核磁共振,簡稱NMR。目前研究得最多的是1H的核磁共振,13C的核磁共振近

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载