細胞化學基礎?誘導力
誘導力(induction force)在極性分子和非極性分子之間以及極性分子和極性分子之間都存在誘導力。由于極性分子偶極所產生的電場對非極性分子發生影響,使非極性分子電子云變形(即電子云被吸向極性分子偶極的正電的一極),結果使非極性分子的電子云與原子核發生相對位移,本來非極性分子中的正、負電荷重心是重合的,相對位移后就不再重合,使非極性分子產生了偶極。這種電荷重心的相對位移叫做“變形”,因變形而產生的偶極,叫做誘導偶極,以區別于極性分子中原有的固有偶極。誘導偶極和固有偶極就相互吸引,這種由于誘導偶極而產生的作用力,叫做誘導力。在極性分子和極性分子之間,除了取向力外,由于極性分子的相互影響,每個分子也會發生變形,產生誘導偶極。其結果使分子的偶極距增大,既具有取向力又具有誘導力。在陽離子和陰離子之間也會出現誘導力。誘導力與極性分子偶極矩的平方成正比。誘導力與被誘導分子的變形性成正比,通常分子中各原子核的外層電子殼越大(含重原子越多......閱讀全文
細胞化學基礎?誘導力
誘導力(induction force)在極性分子和非極性分子之間以及極性分子和極性分子之間都存在誘導力。由于極性分子偶極所產生的電場對非極性分子發生影響,使非極性分子電子云變形(即電子云被吸向極性分子偶極的正電的一極),結果使非極性分子的電子云與原子核發生相對位移,本來非極性分子中的正、負電荷重心
細胞化學基礎?分子誘導力
誘導力(induction force)在極性分子和非極性分子之間以及極性分子和極性分子之間都存在誘導力。由于極性分子偶極所產生的電場對非極性分子發生影響,使非極性分子電子云變形(即電子云被吸向極性分子偶極的正電的一極),結果使非極性分子的電子云與原子核發生相對位移,本來非極性分子中的正、負電荷重心
細胞化學基礎?色散力
色散力(dispersion force 也稱“倫敦力”)所有分子或原子間都存在。是分子的瞬時偶極間的作用力,即由于電子的運動,瞬間電子的位置對原子核是不對稱的,也就是說正電荷重心和負電荷重心發生瞬時的不重合,從而產生瞬時偶極。色散力和相互作用分子的變形性有關,變形性越大(一般分子量愈大,變形性愈大
細胞化學基礎?分子色散力
色散力(dispersion force 也稱“倫敦力”)所有分子或原子間都存在。是分子的瞬時偶極間的作用力,即由于電子的運動,瞬間電子的位置對原子核是不對稱的,也就是說正電荷重心和負電荷重心發生瞬時的不重合,從而產生瞬時偶極。色散力和相互作用分子的變形性有關,變形性越大(一般分子量愈大,變形性愈大
細胞化學基礎?分子取向力
取向力(orientation force 也稱dipole-dipole force)取向力發生在極性分子與極性分子之間。由于極性分子的電性分布不均勻,一端帶正電,一端帶負電,形成偶極。因此,當兩個極性分子相互接近時,由于它們偶極的同極相斥,異極相吸,兩個分子必將發生相對轉動。這種偶極子的互相轉動
細胞化學基礎分子間?三種力的關系
極性分子與極性分子之間,取向力、誘導力、色散力都存在;極性分子與非極性分子之間,則存在誘導力和色散力;非極性分子與非極性分子之間,則只存在色散力。這三種類型的力的比例大小,決定于相互作用分子的極性和變形性。極性越大,取向力的作用越重要;變形性越大,色散力就越重要;誘導力則與這兩種因素都有關。但對大多
細胞化學基礎鋅指
鋅指是一種常出現在DNA結合蛋白質中的一種結構基元。鋅螯合在氨基酸鏈中形成鋅的指狀結構。鋅是某些酶的活性輔助因子,也是某些蛋白質,包括RNA聚合酶的轉錄因子,如TFIIIA(transcription factor III,Asubtype)、類固醇受體等能結合脫氧核糖核酸(DNA)的蛋白質亦含有鋅
細胞化學基礎核酶
科學家在研究RNA的轉錄后加工時發現某些RNA有催化活性,可以催化RNA的剪接,這些由活細胞合成、起催化作用的RNA稱為核酶。許多核酶的底物也是RNA,甚至就是其自身,其催化反應也具有專一性。已經闡明的天然核酶有錘頭狀核酶、發夾狀核酶、I型內含子、Ⅱ型內含子、丁型肝炎病毒核酶、核糖核酸酶P、肽基轉移
細胞化學基礎堿基
堿基,在化學中本是“堿性基團”的簡稱。有機物中大部分的堿性基團都含有氮原子,稱為含氮堿基,氨基(-NH2)是最簡單的含氮堿基。堿基,在生物化學中又稱核堿基、含氮堿基,是形成核苷的含氮化合物,核苷又是核苷酸的組分。堿基、核苷和核苷酸等單體構成了核酸的基本構件。核堿基間可以形成堿基對,且彼此堆疊,所以,
細胞化學基礎嘌呤
嘌呤(Purine),分子式C5H4N4,是一種雜環芳香有機化合物,是新陳代謝過程中的一種代謝物。
細胞化學基礎α螺旋
α-螺旋(α-helix)是蛋白質二級結構的主要形式之一。指多肽鏈主鏈圍繞中心軸呈有規律的螺旋式上升,每3.6 個氨基酸殘基螺旋上升一圈,向上平移0.54nm,故螺距為0.54nm,兩個氨基酸殘基之間的距離為0.15nm。螺旋的方向為右手螺旋。氨基酸側鏈R基團伸向螺旋外側,每個肽鍵的肽鍵的羰基氧和第
細胞化學基礎β轉角
β-轉角是一種常見的蛋白質二級結構,它通常出現在球狀蛋白表面,因此含有極性和帶電荷的氨基酸殘基。
細胞化學基礎腺苷
腺苷,是指由腺嘌呤的N-9與D-核糖的C-1通過β糖苷鍵連接而成的化合物,化學式為C10H13N5O4,其磷酸酯為腺苷酸。腺苷是一種遍布人體細胞的內源性核苷,可直接進入心肌經磷酸化生成腺苷酸,參與心肌能量代謝,同時還參與擴張冠脈血管,增加血流量。腺苷對心血管系統和肌體的許多其它系統及組織均有生理作用
取向力、誘導力、色散力的關系
極性分子與極性分子之間,取向力、誘導力、色散力都存在;極性分子與非極性分子之間,則存在誘導力和色散力;非極性分子與非極性分子之間,則只存在色散力。這三種類型的力的比例大小,決定于相互作用分子的極性和變形性。極性越大,取向力的作用越重要;變形性越大,色散力就越重要;誘導力則與這兩種因素都有關。但對大多
細胞化學基礎A-型-DNA
中文名稱:A 型 DNA英文名稱:A-form DNA定 義:一種右手雙螺旋構型的DNA。螺旋每一圈為11個核苷酸,核苷酸對的平面與雙螺旋軸傾斜20°角。應用學科:細胞生物學(一級學科),細胞化學(二級學科)
細胞化學基礎??疏水性
疏水性分子偏向于非極性,并因此較會溶解在中性和非極性溶液(如有機溶劑)。疏水性分子在水里通常會聚成一團,而水在疏水性溶液的表面時則會形成一個很大的接觸角而成水滴狀。
細胞化學基礎β折疊鏈
在β折疊中,兩條以上氨基酸鏈(肽鏈),或同一條肽鏈之間的不同部分形成平行或反平行排列,成為“股”。
細胞化學基礎β片層
中文名稱:β片層英文名稱:β sheet定 義:免疫球蛋白分子中常見的二級結構,可分為平行式和反平行式兩種類型,兩條或多條幾乎完全伸展的多肽鏈側聚集在一起,相鄰肽鏈間形成有規則的氫鍵。應用學科:免疫學(一級學科),免疫系統(二級學科),免疫分子(三級學科)
細胞化學基礎鋅指結構
定義指的是在很多蛋白中存在的一類具有指狀結構的結構域,這些具有鋅指結構的蛋白大多都是與基因表達的調控有關的功能蛋白。共同特征鋅指結構的共同特征是通過肽鏈中氨基酸殘基的特征基團與Zn2+的結合來穩定一種很短的,可自我折疊成“手指”形狀的的多肽空間構型。發現鋅指蛋白最初在非洲爪蟾的卵母細胞中發現,已知廣
細胞化學基礎鋅指蛋白
定義通常由一系列鋅指組成。 具有重復結構的氨基酸模式,相隔特定距離的胱氨酸結合鋅指,能與某些RNA/DNA 結合。作用鋅指蛋白是一類具有手指狀結構域的轉錄因子,對基因調控起重要的作用。根據其保守結構域的不同,可將鋅指蛋白主要分為C2H2型、C4型和C6型。鋅指通過與靶分子DNA、RNA、DNA-RN
細胞化學基礎腺苷用途
抗心律失常藥,可使陣發性室上性心動過速轉為竇性心律。用于和房室有關的室上心律失常。治療心絞痛、心肌梗塞、冠脈功能不全、動脈硬化、原發性高血壓、腦血管障礙、中風后遺癥、進行性肌肉萎縮等。也可用于生化研究。
細胞化學基礎線粒體DNA
線粒體DNA是線粒體中的遺傳物質,線粒體能為細胞產生能量(ATP),是在細胞線粒體內發現的脫氧核糖核酸特殊形態。線粒體是為細胞提供能量(ATP)的細胞器。一個線粒體中一般有多個DNA分子。它們攜帶著自己的DNA——mtDNA,而這些基因的突變能引起線粒體疾病。雖然疾病癥狀是多變的,但大腦、肌肉和心臟
細胞化學基礎葉綠體DNA
chloroplast DNA(cpDNA),存在于葉綠體內的DNA。高等植物葉綠體的DNA為雙鏈共價閉合環狀分子,其長度隨生物種類而不同,其大小在120kb到217kb之間,相當于噬菌體基因組的大小,例如,T4噬菌體的基因組約165kb。葉綠體DNA不含5-甲基胞嘧啶,這是鑒定cpDNA及其純度的
細胞化學基礎互補-DNA
中文名稱:互補 DNA英文名稱:complementary DNA;cDNA定 義:利用反轉錄酶以mRNA為模板合成的DNA。應用學科:細胞生物學(一級學科),細胞化學(二級學科)
細胞化學基礎衛星DNA
衛星DNA(satelliteDNA)是一類高度重復序列DNA。在介質氯化銫中作密度梯度離心(離心速度可以高達每分鐘幾萬轉)時,DNA分子將按其大小分布在離心管內不同密度的氯化銫介質中,小的分子處于上層,大的分子處于下層。從離心管外看,不同層面的DNA形成了不同的條帶。根據熒光強度的分析,可以看到在
細胞化學基礎轉移RNA
轉移RNA(tRNA)在蛋白質合成過程中負責轉運氨基酸、解讀mRNA遺傳密碼。tRNA占細胞總RNA的10%~15%,絕大多數位于細胞質中。tRNA由Crick于1955年提出其存在,Zamecnik和 Hoagland于1957年鑒定。1.tRNA一級結構具有以下特點:①是一類單鏈小分子RNA,長
細胞化學基礎合成堿基
在醫學中,幾種核苷類似物用作抗癌劑和抗病毒劑。病毒聚合酶將這些化合物與非主要堿基結合。病人服用的核苷類似物進入體內被轉化為核苷酸而在細胞中被激活。
細胞化學基礎稀有堿基
又稱修飾堿基,這些堿基在核酸分子中含量比較少,但他們是天然存在不是人工合成的,是核酸轉錄之后經甲基化、乙酰化、氫化、氟化以及硫化而成。
細胞化學基礎兆堿基
兆堿基megabase (Mb)定義:DNA片段長度單位,相當于1百萬個核苷,大約等于1M。
細胞化學基礎黃嘌呤
黃嘌呤,是一種有機化合物,分子式為C5H4N4O2,分子量為152.111,白色至灰白色結晶粉末。黃嘌呤是一組通常用作溫和的興奮劑和支氣管擴張劑,特別用于治療哮喘癥狀。黃嘌呤的衍生物包括咖啡因,茶堿,可可堿(主要在巧克力中發現) ,和馬黛因。 主要的化合物,黃嘌呤,是嘌呤降解途徑的產物,并會在黃嘌呤