有機熱電材料研究取得進展
近日,中國科學院工程熱物理研究所儲能研發中心和中科院化學研究所有機固體重點實驗室合作,在提升材料熱電性能方面取得重要進展,為一系列二維熱電材料性能的提升提供了研究思路。 有機熱電材料具有導熱系數低、分子多樣性、無毒、易加工等優點,被認為是可穿戴傳感器和便攜式冰箱的理想材料。同時,二維過渡金屬硫化物材料(TMDs)由于良好的載流子遷移率、態密度和可調帶隙而備受關注。盡管TMDs材料的電導率非常高,但其高熱導率,不適合熱電應用。 本研究通過有機共價修飾,將有機化合物的側鏈引入TaS2材料的基面降低TaS2的熱導率,從而獲得較高的熱電優值系數(ZT)。這避免了以往報道共價修飾依賴于邊界和缺陷的問題,并通過該策略獲得的有機/無機雜化結構具有較高的穩定性。為了獲得薄膜樣品的面向熱導率,工程熱物理所儲能研發中心利用自主研發的基于諧波探測的多維跨尺度材料熱電性能分析系統,采用懸空電極消除襯底導熱熱損影響、高真空......閱讀全文
半導體熱電材料
? 半導體熱電材料(英文名:semiconductor thermoelectric material)指具有較大熱電效應的半導體材料,亦稱溫差電材料。它能直接把熱能轉換成電能,或直接由電能產生致冷作用。? ? 1821年,德國塞貝克(see—beck)在金屬中發現溫差電效應,僅在測量溫度的溫差電偶
有機熱電材料研究取得進展
近日,中國科學院工程熱物理研究所儲能研發中心和中科院化學研究所有機固體重點實驗室合作,在提升材料熱電性能方面取得重要進展,為一系列二維熱電材料性能的提升提供了研究思路。? 有機熱電材料具有導熱系數低、分子多樣性、無毒、易加工等優點,被認為是可穿戴傳感器和便攜式冰箱的理想材料。同時,二維過渡金屬
柔性熱電材料研究獲進展
近日,許昌學院教授鄭直團隊在環境友好、低成本制備高效率熱電材料和技術方面取得重要進展,獲得了室溫水溶液反應快速、結構獨特且性能優越的硒化銀熱電薄膜與器件。相關研究成果以“面向商用柔性熱電器件的微結構定制β-硒化銀(β-Ag2Se)薄膜”為題在線發表于材料科學領域期刊《先進材料》 可穿戴設備讓人
柔性熱電材料研究獲進展
近日,許昌學院教授鄭直團隊在環境友好、低成本制備高效率熱電材料和技術方面取得重要進展,獲得了室溫水溶液反應快速、結構獨特且性能優越的硒化銀熱電薄膜與器件。相關研究成果以“面向商用柔性熱電器件的微結構定制β-硒化銀(β-Ag2Se)薄膜”為題在線發表于材料科學領域期刊《先進材料》 可穿戴設備
歐盟積極開發應用熱電材料
作為歐盟第七研發框架計劃(FP7)科技成果之一的新興熱電材料(Thermoelectric Materials),采用現代納米結構合成技術,主要由三大類材料組成:硅基復合材料、碲基復合材料和金屬硫化物復合材料。熱電材料通過“熱”端和“冷”端之間的溫度差產生電流,導電隔熱特性愈好效率愈高,一般情
熱電偶測溫儀常用熱電偶材料
熱電偶分度號 熱電極材料 使用溫度范圍(℃) 正極 負極 S 鉑銠合金(銠含量10 %) 純鉑 0-1400 R 鉑銠合金(銠含量13 %) 純鉑 0-1400 B 鉑銠合金(銠含量30%) 鉑銠合金(銠含量6% ) 0-1400 K 鎳鉻 鎳硅 -200-+1000 T 純銅 銅鎳
熱電偶測溫的原理及熱電極材料的要求
熱電偶測溫的基本原理是熱電效應。在由兩種不同材料的導體A和B所組成的閉合回路中,當A和B的兩個接點處于不同溫度T和To時,在回路中就會產生熱電勢。這就是所謂的塞貝克效應。導體A和B稱為熱電極。溫度較高的一端(T>叫工作端(通常焊接在一起);溫度較低的一端(To>叫自由端(通常處于某個恒定的溫度下>。
寧波材料所在熱電材料研究方面取得系列進展
基于半導體材料的塞貝克效應或帕爾貼效可實現熱能與電能直接相互轉換,包括熱電制冷和熱電發電兩種應用形式。熱電制冷器件具有結構緊湊、無噪聲、無磨損、無泄漏等特點,已廣泛應用于局部冷卻或溫度控制;熱電發電器件可為無人區信號發射裝置、深空探測器、植入式醫療器械等提供電源,更重要的是可以作為一種實現余熱能
熱電能源材料研究獲突破
北京航空航天大學趙立東利用硒化錫獨有的特殊電子能帶結構和多谷效應,可以將其在300K~773K寬溫區范圍內的熱電性能大幅提高,從而使硒化錫在新能源領域的應用邁出了關鍵一步。相關成果11月26日發表于《科學》。 熱電轉換技術是一種利用半導體材料直接將熱能與電能進行相互轉換的技術。該技術憑借系統體
熱電偶的電極材料要求
1、在測溫范圍內,熱電性質穩定,不隨時間而變化,有足夠的物理化學穩定性,不易氧化或腐蝕; 2、電阻溫度系數小,導電率高,比熱小; 3、測溫中產生熱電勢要大,并且熱電勢與溫度之間呈線性或接近線性的單值函數關系; 4、材料復制性好,機械強度高,制造工藝簡單,價格便宜。