• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 高立志小組油茶轉錄組學研究獲新進展

    近日,中科院昆明植物研究所高立志課題組對普通油茶轉錄組學及其油脂代謝途徑進行研究,為油茶享有“東方橄欖油”美譽提供了比較轉錄組學證據,為進一步開展普通油茶的比較功能基因組學研究與分子育種奠定了重要基礎。該研究成果發表在《公共科學圖書館·綜合》。 科研人員采用新一代高通量測序技術,率先對普通油茶的轉錄組進行了大規模平行測序,通過拼接和注釋,首次獲得了油茶高質量的轉錄組數據,填補了美國國立生物技術信息中心(NCBI)公共數據庫的空白,為加快油茶種質資源的發掘利用研究奠定了基礎。 同時,與已發表的小葉茶開展比較轉錄組學分析發現,兩者之間共存在3022 個直系同源基因對,它們大部分受到純化選擇,并檢測到211個基因對受到了達爾文正選擇,其中38對受到了強烈的正選擇作用。解析了油茶脂肪酸代謝、甘油三酯代謝等油脂代謝途徑,挖掘了參與的重要功能基因,揭示了油茶在油脂代謝過程中的調控方式。 值得一提的是,通過與其他21種油料植物油酰磷......閱讀全文

    高立志小組油茶轉錄組學研究獲新進展

      近日,中科院昆明植物研究所高立志課題組對普通油茶轉錄組學及其油脂代謝途徑進行研究,為油茶享有“東方橄欖油”美譽提供了比較轉錄組學證據,為進一步開展普通油茶的比較功能基因組學研究與分子育種奠定了重要基礎。該研究成果發表在《公共科學圖書館·綜合》。  科研人員采用新一代高通量測序技術,率先對普通油茶

    關于基因轉錄的轉錄因子介紹

      轉錄因子(transcription factor)是起調控作用的反式作用因子。轉錄因子是轉錄起始過程中RNA聚合酶所需的輔助因子。真核生物基因在無轉錄因子時處于不表達狀態,RNA聚合酶自身無法啟動基因轉錄,只有當轉錄因子(蛋白質)結合在其識別的DNA序列上后,基因才開始表達。轉錄因子的結合位點

    常山油茶的形態特征

      油茶樹高達4~6米,一般2~3米。樹皮淡褐色,光滑。單葉互生,革質,橢圓形或卵狀橢圓形,邊緣有細鋸齒,長3-10厘米,寬1.5-4.5厘米,花頂生或腋生,兩性花,白色,直徑6-9厘米,花瓣倒卵形,頂端常二裂。蒴果球形、扁圓形、橄欖形,直徑3-4厘米,果瓣厚而木質化,內含種子。種子茶褐色或黑色,三

    常山油茶的分布范圍

      宋末已有廣泛分布,解放后得到較大發展。截至1984年面積已達19580畝,全國以縣為單位,序列第27位。1972年常山縣茶籽總產量達6198噸,為歷史最高年產量。

    基因轉錄調控的途徑

    可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。

    基因轉錄后調控方式

    真核生物的RNA被翻譯之前需要通過核孔輸出,因此核輸出對基因表達有著顯著影響。所有進出細胞核的mRNA的運輸都是通過核孔進行的,受到各種輸入蛋白和輸出蛋白的控制。攜帶遺傳密碼的mRNA需要存活足夠長的時間才能被翻譯,因為mRNA在翻譯之前必須經過很長距離的運輸。在典型的細胞中,RNA分子僅在特異性保

    解析四倍體攸茶(Camellia-meiocarpa-Hu)單倍型基因組

    在植物的奇妙世界里,油茶作為重要的木本食用油料植物,有著超 2300 年的栽培歷史,其用途廣泛,在全球糧食危機的大背景下愈發受到關注。攸茶(Camellia meiocarpa?Hu)是其中一員,它葉茂花大果豐,極具農業利用潛力。然而,四倍體攸茶的染色體水平基因組數據匱乏,且多倍體油茶物種高質量基因

    常山油茶的主要價值

      茶油是最好的食用油。其主要成份是以油酸和業油酸為主的不飽和脂肪酸,含量占90%以上,無膽固醇。因此食用后不會使人體血清中的膽固醇增加,不易引起血管硬化和血壓增加。不含引起人體致癌的黃曲霉素。  茶餅用途廣,價值高。據測定,茶餅中含粗脂肪25%,皂素10%,脫脂去皂后的餅粕含有粗蛋白14%,皂素、

    解碼“液體黃金”合成的油茶遺傳密碼

      油茶是我國傳統的木本油料樹種,具有2300余年的栽培和食用歷史。自上世紀起,經過四代科技工作者的艱苦努力,我國油茶主栽良種衍生出數百個品種。但受制于多倍性、長時效的特性,油茶育種工作效率不高。  2022年1月10日,中國林業科學研究院亞熱帶林業研究所(以下簡稱亞林所)研究員姚小華團隊和殷恒福團

    關于基因轉錄的基本介紹

      基因轉錄是在細胞核和細胞質內進行的。它是指以DNA的一條鏈為模板,按照堿基互補配對原則,在RNA聚合酶作用下合成RNA的過程。基因轉錄有正調控和負調控之分。  如細菌基因的負調控機制是當一種阻遏蛋白(repressor protein)結合在受調控的基因上時,基因不表達;而從靶基因上去除阻遏蛋白

    基因轉錄因子的相關介紹

      轉錄因子(transcription factor)是起調控作用的反式作用因子。轉錄因子是轉錄起始過程中RNA聚合酶所需的輔助因子。真核生物基因在無轉錄因子時處于不表達狀態,RNA聚合酶自身無法啟動基因轉錄,只有當轉錄因子(蛋白質)結合在其識別的DNA序列上后,基因才開始表達。轉錄因子的結合位點

    基因表達的轉錄機制介紹

      轉錄過程由RNA聚合酶(RNAP)進行,以DNA為模板,產物為RNA。RNA聚合酶沿著一段DNA移動,留下新合成的RNA鏈。  基因組DNA由兩條反向平行和反向互補鏈組成,每條鏈具有5'和3'末端。這兩條鏈分別稱為“模板鏈”(產生RNA轉錄物的模板)和“編碼鏈”(含有轉錄本序列的

    關于基因轉錄的過程介紹

      (1)基因轉錄— 轉錄的啟動  DNA上存在著轉錄的起始信號,它是特殊的核苷酸序列,稱為啟動子。  轉錄是由RNA聚合酶全酶結合于啟動子而被啟動的。  其機理是:s因子能識別啟動子,并識別有義鏈,它與核心酶結合,引導核心酶定位到啟動子部位。  (2)基因轉錄—?轉錄的起始  當聚合酶結合到啟動子

    用CRISPR實現基因轉錄活體成像

      最近,日本的一個研究小組開發出一種實時成像方法,用于內源基因轉錄活性和核定位的同步測量。研究人員用該方法來檢測亞基因組范圍的流動性變化,這取決于小鼠胚胎干細胞中多能性相關基因的活性。 Hiroshi Ochiai博士和他的同事Takeshi Sugawara博士、Takashi Yamamoto

    關于基因表達的轉錄機制介紹

      基因表達的轉錄過程由RNA聚合酶(RNAP)進行,以DNA為模板,產物為RNA。RNA聚合酶沿著一段DNA移動,留下新合成的RNA鏈。  基因組DNA由兩條反向平行和反向互補鏈組成,每條鏈具有5'和3'末端。這兩條鏈分別稱為“模板鏈”(產生RNA轉錄物的模板)和“編碼鏈”(含有轉

    基因轉錄圖的結構或功能

    轉錄圖基因轉錄圖即是把細胞內染色體或DNA上所有基因定位在染色體或DNA基因組的不同位置上,反映在 正常或受控條件下能夠表達的cDNA片段數目、種類、結構與功能的信息,是用來表示DNA上哪些核苷酸序列可以編碼蛋白質。生物性狀是由結構或功能蛋白決定的,功能蛋白是由信使RNA(mRNA)編碼的,mRNA

    基因表達轉錄調控的主要途徑

    基因表達轉錄調控可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。

    基因表達的轉錄調控的介紹

      可分為三種主要途徑:  1)遺傳調控(轉錄因子與靶標基因的直接相互作用);  2)調控轉錄因子與轉錄機制相互作用;  3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。  通過轉錄因子直接調控靶標DNA表達是最簡單和最直接的轉錄調控改變轉錄水平的方法。基因的編碼區周圍通常都具有幾個蛋白質結合

    RNA干擾(轉錄后基因沉默)實驗

    RNA干擾 ? ? ? ? ? ? 實驗方法原理 1. 病毒基因、人工轉入基因、轉座子等外源性基因隨機整合到宿主細胞基因組內,并利用宿主細胞進行轉錄時,常產生一些dsR

    使用轉錄定位法進行基因定位

    許多?RNA病毒的整個基因組往往作為一個單位轉錄。隨著轉錄的進行,由基因組上各個基因所編碼的蛋白質也依序在寄主細胞中出現。當寄主細胞被紫外線照射使本身的蛋白質合成受到抑制時,病毒蛋白的出現更為明顯。紫外線照射也起著抑制病毒基因組的轉錄的作用。紫外線在 RNA分子的某一部位造成損傷后,損傷的部位和它后

    RNA干擾(轉錄后基因沉默)實驗

    RNA干擾(RNA interference, RNAi)是指在進化過程中高度保守的、由雙鏈RNA(double-stranded RNA,dsRNA)誘發的、同源mRNA高效特異性降解的現象。目前主要用于(1)特異性剔除或關閉特定基因的表達 (2)探索基因功能和傳染性疾病及惡性腫瘤的治療 (3)使

    關于基因表達的轉錄調控介紹

      基因表達的轉錄調控可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。  通過轉錄因子直接調控靶標DNA表達是最簡單和最直接的轉錄調控改變轉錄水平的方法。基因的編碼區周圍通常都具有幾個蛋白

    常山油茶的形態特征及分布范圍

      形態特征  油茶樹高達4~6米,一般2~3米。樹皮淡褐色,光滑。單葉互生,革質,橢圓形或卵狀橢圓形,邊緣有細鋸齒,長3-10厘米,寬1.5-4.5厘米,花頂生或腋生,兩性花,白色,直徑6-9厘米,花瓣倒卵形,頂端常二裂。蒴果球形、扁圓形、橄欖形,直徑3-4厘米,果瓣厚而木質化,內含種子。種子茶褐

    中國科大基因轉錄調控研究取得進展

      近日,中國科學技術大學生命科學學院教授單革實驗室研究發現,秀麗線蟲中兩個高度保守的轉錄因子UNC-30和UNC-55,共調控包括cAMP通路、微小RNA(microRNA)和長鏈非編碼RNA(lncRNA)等在內的數以千計的靶基因的表達,從而調控D型運動神經元的發育和可塑性。研究論文近日發表在《

    真核基因轉錄水平的調控2

    (3)增強子的位置可在基因5′上游、基因內或其3′下游的序列中,而其作用與所在基因旁側部位的方向似無關系,因為無論正向還是反向,它都具有增強效應;(4)增強子所含核苷酸序列大多為重復序列,其內部含有的核心序列,對于它進入到另一宿主之后重新產生增強子效應至關重要;(5)增強子一般都具有組織和細胞特異性

    基因表達的轉錄后調控的介紹

      真核生物的RNA被翻譯之前需要通過核孔輸出,因此核輸出對基因表達有著顯著影響。所有進出細胞核的mRNA的運輸都是通過核孔進行的,受到各種輸入蛋白和輸出蛋白的控制。  攜帶遺傳密碼的mRNA需要存活足夠長的時間才能被翻譯,因為mRNA在翻譯之前必須經過很長距離的運輸。在典型的細胞中,RNA分子僅在

    科學家揭示基因轉錄終止機制

    DNA是遺傳信息的載體,遺傳信息通過轉錄從DNA傳遞到RNA,隨后通過翻譯解碼成蛋白質。基因是DNA遺傳信息的編碼單元,基因的正確解碼需要執行基因轉錄的RNA聚合酶嚴謹識別基因的的起始序列(啟動子)和終止序列(終止子)。轉錄終止過程發生異常會干擾下游基因的表達,影響DNA復制,破壞基因組穩定性等。

    關于基因轉錄的基本內容介紹

      基因轉錄是在細胞核和細胞質內進行的。它是指以DNA的一條鏈為模板,按照堿基互補配對原則,在RNA聚合酶作用下合成RNA的過程。基因轉錄有正調控和負調控之分。  如細菌基因的負調控機制是當一種阻遏蛋白(repressor protein)結合在受調控的基因上時,基因不表達;而從靶基因上去除阻遏蛋白

    真核基因轉錄水平的調控1

    一、真核生物的RNA聚合酶有三種RNA聚合酶:RNA聚合酶Ⅰ;RNA聚合酶Ⅱ;RNA聚合酶Ⅲ。二、真核基因順式作用元件(一)、順式作用元件概念指DNA上對基因表達在調節活性的某些特定的調控序列,其活性僅影響其自身處于同一DNA分子上的基因。(二)、種類啟動子、增強子、靜止子1、啟動子的結構和功能啟動

    關于基因轉錄的位置和方式介紹

      1、基因轉錄—轉錄位置  在真核生物中,DNA的轉錄在細胞核中進行,其中rRNA的合成發生在核仁,mRNA的tRNA的合成發生在核質中。  在原核生物中,轉錄在細胞質的核質區進行。  2、基因轉錄—轉錄方式  轉錄開始不需要引物,鏈的延長方向也是 5′→ 3′。  每次被轉錄的DNA只是一個小區

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载