近兩年,3C手性耦合芯光纖被越來越多的提及,頻繁地出現在各類期刊文章當中,成為光纖激光器件家族中被重點關注的對象。為什么與雙包層、三包層光纖相比,3C光纖會同樣備受關注?是什么樣的波導結構賦予之怎樣的光學特性?今天咱們就一起來認識和了解一下3C手性耦合芯光纖。手性介質與手性波導手性(Chirality or Handedness)是一個幾何概念,它是指物體所具有的經由平移、旋轉等任何實的空間操作都無法與其鏡像相重合的性質,這種性質與物體本身的對稱性缺失有關系。可以形象而簡單的說,手性即是物體可以用手來表征的性質,因此也被稱為手征性。手性體是具有手性的物體,典型的代表是螺旋和扭結狀物體,手性體可以是三維的也可以是二維的。手性體的尺度可大可小,它可以是宏觀物體如星系、星云等,也可以是 DNA、氨基酸等微觀分子。圖 1-1 給出了兩個手性體的例子,分別是法國蝸牛和具有雙螺旋結構的 DNA 分子[1]。 圖1. 法國蝸牛和具有......閱讀全文
近兩年,3C手性耦合芯光纖被越來越多的提及,頻繁地出現在各類期刊文章當中,成為光纖激光器件家族中被重點關注的對象。為什么與雙包層、三包層光纖相比,3C光纖會同樣備受關注?是什么樣的波導結構賦予之怎樣的光學特性?今天咱們就一起來認識和了解一下3C手性耦合芯光纖。手性介質與手性波導手性(Chiralit
在 2009 年以雙包層摻鐿3C光纖搭建放大系統來探究其放大特性[10]。該實驗得到了 250 W 的連續功率輸出和150W輸出脈沖 10 ns,脈沖能量達到0.6mJ,峰值功率60kW,放大斜率效率達到 74%。同樣,在所有功率水平下,系統輸出光斑均為單模。2010 年,該團隊將3C光纖應用于主振
基于單芯光纖的激光放大器受限于自聚焦等非線性效應,在功率提升方面遭遇瓶頸。使用大模場面積光纖可以提升放大功率,但較大的模面積會引入高階模式,在高泵浦功率下出現橫模不穩定影響光斑質量。多路激光的相干合成是一種提升光纖單纖芯放大功率上限的方案,可以顯著增加輸出激光的平均功率,但不足之處在于需要相位反饋系
fLaser 光纖激光器 針對光纖光譜儀開發 / 小功率 & 高穩定 / 熒光 & 拉曼專用
研究者首先在無泵浦的情況下測量了優化前各個超模的比例,結果如圖6所示,在未優化的情況下,異相模式占比僅為70%,而利用算法補償了非理想的器件引入的相位扭曲后,可以將異相模式占比提高到90%。實驗中只有當參考臂增加260fs的時間延遲時才出現另一個超模式的干涉圖樣,略大于種子脈沖的變換極限脈寬(220
采用光纖激光器的機器占地小,激光光源和冷卻系統體積也更小;沒有激光氣體管線,也不需要調校鏡片。而功率為2kw或3kw的光纖激光光源只需要4kw或6kw CO2激光光源能耗的50%就能達到相同的性能,并且速度更快、能耗更低、對環境造成的影響更少。 光纖激光器采用固態二極管來泵浦雙包層摻鐿光纖內的
產品特點 1. 激光切割FPC的優點 2. 激光在撓性電路板制造過程中有三個主要功能:FPC外型切割,覆蓋膜開窗,鉆孔等; 3.直接根據CAD 數據用來激光切割,更方便快捷,可以大幅度縮短交貨周期; 4.不因形狀復雜、路徑曲折而增加加工難度; 5.進行覆蓋膜開窗口時,切割出的覆蓋膜輪廓
想要達到光纖傳輸的最jia效果,需要光纖具有良好的切割和端面拋光。不僅如此,如果是自由空間光束耦合到光纖,還需選擇正確的透鏡。 耦合到多模光纖為多模光纖選擇耦合鏡片相對來說比較簡單。選擇一個數值孔徑(NA)和光纖的數值孔徑最jie近的光學元件,使光源的焦點大小和光纖的纖芯大小匹配,并使入射
超快光纖激光技術之五:如何提高橫模不穩定性(TMI)的閾值我們在超快光纖激光技術之四中已經知道,TMI導致光束波動需要滿足兩個條件: (1)出現瞬態折射率光柵(RIG)和 (2) 模間干涉圖樣MIP與RIG之間存在相移。因此,可以通過削弱RIG或者控制MIP-RIG相移以提高TMI閾值,具體
中國科學院上海光學精密機械研究所研究員廖梅松帶領非線性光纖課題組劉垠垚、吳達坤等人,在高非線性光子晶體光纖的研制方面取得了新進展。 由于高非線性光子晶體光纖具有普通階躍型光纖所不具備的特殊色散和高非線性,是產生超連續譜激光的核心器件。超連續譜是一種具有超寬的光譜和高度方向性的高亮度寬帶光源,在