人類基因組包含大約31.6億個DNA堿基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DNA的第一次組裝壓縮。為了讀取基因密碼,染色質中的DNA需要時刻從組蛋白八聚體上解離,信息讀取完畢后DNA快速正確地結合組蛋白八聚體恢復染色質結構。因此染色質結構高度動態的開合是細胞核內染色質的主旋律。為了保證精確的讀取基因密碼,動態調控染色質結構,生命進化出了紛繁復雜的調控方式,比如DNA甲基化修飾,組蛋白甲基化、乙酰化、泛素化等修飾,組蛋白變體,各種染色質伴侶,多種染色質重塑因子。如何定量地描述這些調控因素對染色質的影響,是人們正確認識基因轉錄機理的關鍵所在。單分子力譜技術是精確操控生物大分子,在單分子水平上跟蹤生物大分子動態結構和......閱讀全文
本文中,小編盤點了多篇研究報告,共同解析科學家們在組蛋白研究上取得的新成就,與大家一起學習!圖片來源:Daniel N. Weinberg et al,doi:10.1038/s41586-019-1534-3 【1】Nature:揭示組蛋白標記H3K36me2招募DNMT3A并影響基因間DN
組蛋白修飾 表觀遺傳學是指表觀遺傳學改變 (DNA 甲基化、組蛋白修飾和非編碼 RNA 如 miRNA) 對 表觀基因組基因表達的調節,這種調節不依賴基因序列的改變且可遺傳表觀。因素如 DNA 甲基化、組蛋白修飾和 miRNA 是對環境刺激因素變化的反映,這些表觀遺傳學因素相互作用以調節基因
大家好,我又來啦~~今天給大家放送的是表觀遺傳之組蛋白修飾相關的內容噢,組蛋白修飾也是一個比較復雜的過程,今天呢,我們就給大家講講組蛋白乙酰化及相關的產品。 一 組蛋白修飾 真核生物染色質的基本結構單位是核小體,它由約 146 bp DNA 纏繞組蛋白八聚體組成,其中組蛋白八聚體
來自美國托馬斯杰斐遜大學的一個研究團隊獲得了關于組蛋白修飾作用相反的證據。在一項果蠅胚胎研究中,他們發現親代的甲基化組蛋白并沒有轉移給子代DNA。相反,在DNA復制后,由新合成的未修飾組蛋白組裝成了新的核小體。相關論文發布在8月23日的《細胞》(Cell)雜志上。 托馬斯杰斐遜大學生物化學
組蛋白翻譯后修飾研究進展 中國科學院生物物理所的楊福全研究員在研討會上做了題為《組蛋白翻譯后修飾研究進展》的精彩報告。 中國科學院生物物理所 楊福全 研究員 楊研究員從以下幾個方面,就近年來組蛋白翻譯后修飾的研究進展做了綜述。染色體和染色質  
21世紀,表觀遺傳學的研究得到了快速發展,同時其產生了讓研究人員感興趣和憧憬的東西,當然了,這其中也存在一些大肆宣傳的成分,本文中,我們回顧了表觀遺傳學在過去幾十年里是如何演變的,同時分析了近年來改變科學家們對生物學理解的一些研究進展;我們討論了表觀遺傳學和DNA序列改變之間的相互作用,以及表觀
清華大學醫學院基礎醫學系和結構生物學中心李海濤課題組日前在國際權威學術期刊《自然》(Nature, 2014年3月2日)和《基因與發育》(Genes & Dev,2014年3月3日)在線發表兩篇論文
組蛋白(Histone)在真核生物染色體中扮演著重要的角色,是染色體結構單元核小體的重要組成部分。由核心組蛋白H3,H4,H2A,H2B形成的八聚體是DNA纏繞的主要承載體【1】。除了用以裝配染色體外,組蛋白的另外一個重要功能是參與基因組信息的表達調控。組蛋白氨基酸殘基上的翻譯后修飾如乙酰化、甲
來自國家自然科學基金委員會的消息,8月18日國家自然科學基金委員會公布了2015年國家自然科學基金申請項目評審結果,其中面上項目16709項、重點項目624項、創新研究群體項目38項、優秀青年科學基金項目400項、青年科學基金項目16155項、地區科學基金項目2829項、海外及港澳學者合作研究基
每8對夫婦中就有1對存在生育困難的問題,其中近四分之一的原因都是由不明原因的男性不育所引起的,在過去10年里,研究人員發現,男性不育與缺陷的精子在發育過程中無法從DNA中“驅逐”組蛋白有關,而其背后的機制以及在精子DNA中所發生的未知,目前研究人員并不清楚。圖片來源:Bobjgalindo/Wiki
人類的遺傳信息儲存于DNA。雖然人體所有體細胞DNA都一樣,其編碼基因的表達在不同細胞中卻不盡相同。那么,基因在不同類型的細胞中怎樣選擇性表達呢?人類DNA長達1.8米,通常纏繞在組蛋白上形成核小體,核小體經進一步折疊將DNA包裝在小小的細胞核中。組蛋白起著DNA守護者的作用,決定著DNA上哪些
對DNA與組蛋白的相互作用的認識是我們進一步了解其功能和探討生命現象的重要基礎。原子力顯微鏡(AFM)成像分辨率高、成像直觀,且樣品制備簡單,不需要經過脫水、抽真空、染色、包埋等 這些會使生物分子結構發生一定改變的復雜處理過程,并可對生物分子在近生理條件下檢測
1. 真核生物表達的優越性和必要性① 真核生物具有轉錄后加工系統,可識別并刪除基因中的內含子,剪切加工為成熟mRNA.②具備完善的翻譯后加工系統,可進行糖基化、乙酰化等修飾,使蛋白形成正確的天然構型,因而真核生物表達系統產生的蛋白更接近天然狀態,有利于其功能、生物活性的研究。③某些真核細胞可將基因表
組蛋白翻譯后修飾方式出現異常,以及組蛋白修飾位置出現異常都會導致腫瘤發生。 高通量DNA測序技術的快速擴張讓我們能夠以前所未有的速度和精細度對人體疾病展開遺傳學分析,尤其是對罕見的小兒疾病進行全基因組測序(whole-genome sequencing)更是有助于我們對兒童發育,以及多
(3)原核生物的基因組基本上是單倍體,而真核基因組是二倍體。(4)如前所述,細菌多數基因按功能相關成串排列,組成操縱元的基因表達調控的單元,共同開啟或關閉,轉錄出多順反子(polycistron)的mRNA;真核生物則是一個結構基因轉錄生成一條mRNA,即mRNA是單順反子(monocistron)
表觀遺傳學指基因序列不變化的前提下,基因表達發生了可遺傳的變化,包括DNA甲基化、染色質改型、基因沉默、RNA編輯、組蛋白修飾(甲基化、乙酰化、磷酸化等)等。其中,染色質改型調控基因表達的過程,涉及多種導致DNA和組蛋白組成變化、染色質構象變化的蛋白質。 眾多研究已經證明,染色體畸變和染色質異
本周又有一期新的Science期刊(2018年9月28日)發布,它有哪些精彩研究呢?讓小編一一道來。 1.Science:重大進展!鑒定出有害藻花產生強效神經毒素軟骨藻酸的基因簇 doi:10.1126/science.aau0382; doi:10.1126/science.aau9067
組蛋白去乙酰化酶(histone deacetylase,HDAC)是一類蛋白酶,對染色體的結構修飾和基因表達調控發揮著重要的作用。一般情況下,組蛋白的乙酰化有利于DNA與組蛋白八聚體的解離,核小體結構松弛,從而使各種轉錄因子和協同轉錄因子能與DNA結合位點特異性結合,激活基因的轉錄。在細胞核內
軸突是神經沖動傳遞過程中結構與功能的基本單位。無論在中樞抑或是周圍神經系統損傷后,誘導有效的軸突再生過程是改善神經功能的基礎。現已證實,脊髓損傷后軸突能否再生不僅取決于其固有的生長能力,還取決于軸突所處的環境。神經系統損傷后,神經細胞對軸突再生相關基因的表達動員能力及細胞骨架原料的形成能力是決定
選方案組蛋白去乙酰化酶(histone deacetylase,HDAC)是一類蛋白酶,對染色體的結構修飾和基因表達調控發揮著重要的作用。一般情況下,組蛋白的乙酰化有利于DNA與組蛋白八聚體的解離,核小體結構松弛,從而使各種轉錄因子和協同轉錄因子能與DNA結合位點特異性結合,激活基因的轉錄。在細胞核
在細胞核中,染色體DNA與稱作為組蛋白的結構蛋白緊密結合,生物學家們把這種DNA—蛋白質混合物叫做染色質。直到大約20年前,組蛋白都被視作是核“伙伴”,是DNA鏈環繞的包裝物質。而近年來,生物學家們大大增進了對DNA/組蛋白互作支配基因表達機制的理解。 2012年,來自多個研究機構的研究人員
細胞需要用組蛋白將DNA分子裝配成染色體。長期以來,科學家們認為組蛋白遵循著典型的生物學平衡,組蛋白太少會導致DNA損傷,而組蛋白過多又會毒害細胞。羅切斯特大學的一項新研究從根本上轉變了人們的老觀點,解析了該平衡背后的機制。 脂滴是與脂肪儲存有關的結構,此前研究顯示果蠅胚胎中有大量的組蛋白
上個世紀50年代初,Watson和Crick建立了DNA分子結構模型,極大程度地促進了生命科學的發展。自此遺傳學便成為現代醫學研究領域中一個重要的分支。人類已經認識到基因突變可以導致疾病的發生,如慢性進行性舞蹈病(Huntington's chorea, Hc)和囊性纖維化等。近年來
哥本哈根大學的研究人員發現了組蛋白一個前所未知的功能,由此增進了對細胞保護和修復DNA損傷機制的認識。這一新知識有可能最終促使開發出針對癌癥等疾病的更好的療法。 研究人員揭示出了組蛋白迄今未知的一種功能,可促成更好的療法來治療細胞改變所引起的疾病。 Novo Nordisk基金會蛋白質研究中
染色質免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究體內DNA與蛋白質相互作用的重要工具。它可以靈敏地檢測目標蛋白與特異DNA片段的結合情況,還可以用來研究組蛋白與基因表達的關系。核小體組蛋白可以發生多種翻譯后的共價修飾,如乙酰化、甲基化、磷酸化、泛素化等,這些
人類基因組包含大約31.6億個DNA堿基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DN
人類基因組包含大約31.6億個DNA堿基對,線性DNA分子作為龐大遺傳信息的載體一般都比較長(人類一條染色體的DNA長度約為2米),生命通過組蛋白將DNA分子有序組織壓縮形成微米級別的染色質存儲到細胞核中。核小體是染色質的結構和功能的最基本單元,其中DNA纏繞在組蛋白巴聚體周圍約兩圈,完成對DN
隨著人類基因組測序工作的基本完成,功能基因組學逐漸成為研究的熱點。而基因表達的調控又是功能基因組學的一個重要研究領域,要想提供蛋白因子直接調控的證據,需要直接檢測蛋白質-DNA的相互作用,而染色質免疫沉淀技術(Chromatin Immunoprecipitation,ChIP)就是一種研
生物通報道:高等生物的基因組DNA圍繞著由四種組蛋白組成的八聚體,形成碟狀的核小體結構。基因組DNA以這樣的形式包裝成為染色質,使DNA受到良好的保護。通過“讀取”模塊識別組蛋白共價修飾是表觀遺傳學調控的一個主要機制。 最近人們發現了多種組蛋白賴氨酸酰化,比如巴豆酰化(Kcr)、丁酰化(Kbu
記者23日從北京師范大學生命科學學院獲悉,該院邱小波教授領導的研究團隊發現乙酰化,而不是泛素化,介導了組蛋白通過特異的蛋白酶體降解。相關論文發表在最新一期國際著名期刊《細胞》上。該發現修正了科學界關于體細胞組蛋白不降解的論點,將開辟關于乙酰化介導蛋白質降解研究的新領域。 科學界一直認為,作