• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • Nature:基于冷凍電鏡的新技術MicroED確定微小晶體結構

    α-突觸核蛋白(α-synuclein)是路易小體(Lewy body)的主要成分,與帕金森病和其他神經退行性病變密切相關。日前,科學家們使用尖端技術MicroED(micro-electron diffraction)解析了α-突觸核蛋白的毒性核心,獲得了分辨率超高的晶體結構。程亦凡博士在九月九日的Nature雜志上發表文章,探討了這一重大進展在結構生物學中的意義。 程亦凡博士是加州大學舊金山分校的副教授,他原本是物理學博士,后來改用物理學方法研究生物問題。 近來程博士在冷凍電鏡方面陸續發表了多項重要成果,受到了廣泛的關注。2015年,程亦凡博士成為了霍華德·休斯醫學研究所的研究員。 α-突觸核蛋白的毒性核心由11個殘基組成,被稱為NACore。NACore可以形成有序的三維晶體,但這種晶體實在太小,光學顯微鏡觀察不到,也難以進行X射線衍射。于是研究人員采用了以冷凍電鏡(cryo-EM)為基礎的新技術,MicroED。......閱讀全文

    冷凍電鏡電子晶體學

    電子晶體學利用電子顯微鏡對生物大分子在一維、二維以致三維空間形成的高度有序重復排列的結構(晶體)成像或者收集衍射圖樣,進而解析這些生物大分子的結構,這種方法稱為電子晶體學。其適合的樣品分子量范圍為10~500kD,最高分辨率約1.9?。該方法與X射線晶體學的類似之處在于均需獲得高度均一的生物大分子的

    冷凍電鏡電子晶體學

    電子晶體學X-ray晶體學與生物電鏡的結合形成電子晶體學,綜合了三維密度圖和傅立葉變換數學理論,這可追述到D.De Rosier和A.Klug對T4噬菌體尾部的螺旋結構的研究工作上[2]。通過獲得已制好的結構規則的二維晶體的高分辨率電子密度圖,我們可以解析出它的原子水平結構,螺旋對稱樣品或二十面體對

    Nature:基于冷凍電鏡的新技術MicroED確定微小晶體結構

      α-突觸核蛋白(α-synuclein)是路易小體(Lewy body)的主要成分,與帕金森病和其他神經退行性病變密切相關。日前,科學家們使用尖端技術MicroED(micro-electron diffraction)解析了α-突觸核蛋白的毒性核心,獲得了分辨率超高的晶體結構。程亦凡博士在九月

    X-射線晶體學與冷凍電鏡在結構生物學上如何互補?

    小劉同學的故事好感慨的題目,基本上就是小劉同學大學生活的變遷2012年,小劉同學剛剛結束了高考。滿懷對生命科學的憧憬,心想,二十一世紀是生命科學的世紀。他現在也這樣覺得。于是背上小小的行囊,告別了家鄉和爹娘;只身來到了帝都,前去某知名985高校學一門手藝。希望能功成名就,回老家蓋房子,娶媳婦。小劉同

    冷凍電鏡解決膜蛋白的結構

    冷凍電子顯微鏡技術已經發展成為一個成熟的方法,應用于各種復雜的生物分子體系的高分辨結構研究。按照目前的發展勢頭,解決生物分子結構組(structural proteome)的問題已經不是遙不可及的了。在解決單一靜態結構的基礎上,冷凍電鏡也展示了其研究多構象體系的潛力。下面對冷凍電鏡在結構生物學研究領

    冷凍電鏡樣品冷凍

    樣品冷凍樣品冷凍其實是科學家們很早就想到的思路,但是冷凍之后樣品中水分子形成冰晶,不僅產生強烈電子衍射掩蓋樣品信號,還會改變樣品結構。直到1974年,Kenneth A. Taylor和Robert M. Glaeser在-120℃觀察含水生物樣品時未發現冰晶形成,而且發現冷凍樣品能夠耐受更大劑量和

    冷凍電鏡

    說起冷凍電鏡,小編想不管是研究生還是教授大咖,可能和科研有那么一丁點聯系的人對這個名字都不會陌生,因為它實在太出名了!基于冷凍電鏡產出的科研成果很多都發表在Nature、Science、Cell等頂刊上(羨慕臉),堪稱NSC神器。冷凍電鏡技術的發展直接帶動了生命科學領域,特別是結構生物學的飛速發展,

    冷凍電鏡從靜態結構到動態分子電影

    從靜態結構到動態分子電影生物分子在室溫下是活躍的,而且大多數的分子功能是通過結構的變化來實現的。基于X射線, 尤其是最近發展的X 射線自由電子激光(XFEL)的結構生物學的研究重點之一便是實現時間分辨的結構生物學研究(time-resolved structure determination)。到目

    冷凍電鏡?細胞內分子結構測定

    ?細胞內分子結構測定:從溶液內(in vitro)到細胞內(in situ)當前的高分辨分子結構基本都是在溶液中提純出來的分子樣品,也就是通常所說的in vitro 實驗。現在可以利用快速冷凍的方法把細胞固定,再用高能粒子槍對細胞進行高精度切片。在細胞的某些部位,常常有大量同類分子聚集,比如在內質網

    冷凍蝕刻電鏡技術

    凍蝕刻(Freezeetching)技術是從50年代開始發展起來的一種將斷裂和復型相結合的制備透射電鏡樣品技術,亦稱冷凍斷裂(Freezefracture)或冷凍復型(Freezereplica),用于細胞生物學等領域的顯微結構研究。

    冷凍電鏡成像

    冷凍電鏡成像冷凍的樣品冷凍輸送器轉移到電鏡的樣品室,在電鏡成像之前,需確認樣品中的水處于玻璃態。由于生物樣品對高能電子的輻射敏感,成像時必須使用低劑量技術(

    冷凍電鏡分類

    冷凍電鏡分類目前我們討論的冷凍電鏡基本上指的都是冷凍透射電子顯微鏡,但是如果我們以使用冷凍技術的角度定義冷凍電鏡的話,冷凍電鏡主要可以分為冷凍透射電子顯微鏡、冷凍掃描電子顯微鏡、冷凍蝕刻電子顯微鏡。?冷凍透射電子顯微鏡冷凍透射電鏡(Cryo-TEM)通常是在普通透射電鏡上加裝樣品冷凍設備,將樣品冷卻

    冷凍電鏡原理

    冷凍電鏡原理冷凍電子顯微學解析生物大分子及細胞結構的核心是透射電子顯微鏡成像,其基本過程包括樣品制備、透射電子顯微鏡成像、圖像處理及結構解析等幾個基本步驟(圖3.1)。在透射電子顯微鏡成像中,電子槍產生的電子在高壓電場中被加速至亞光速并在高真空的顯微鏡內部運動,根據高速運動的電子在磁場中發生偏轉的原

    冷凍電鏡研究

    在低溫下使用透射電子顯微鏡觀察樣品的顯微技術,就叫做冷凍電子顯微鏡技術,簡稱冷凍電鏡(cryo-electron microscopy, cryo-EM)。冷凍電鏡是重要的結構生物學研究方法,它與另外兩種技術:X射線晶體學(X-ray crystallography)和核磁共振(nuclear ma

    冷凍電鏡原理

    冷凍電鏡原理冷凍電子顯微學解析生物大分子及細胞結構的核心是透射電子顯微鏡成像,其基本過程包括樣品制備、電子顯微鏡成像、圖像處理及結構解析等幾個基本步驟。冷凍電鏡解析結構步驟 ?圖片來源:中科院計算所透射電子顯微鏡成像過程中,電子束穿透樣品,將樣品的三維電勢密度分布函數沿著電子束的傳播方向投影至與傳播

    冷凍電鏡技術揭開重要蛋白原子結構

      據物理學家組織網10月30日報道,英國科學家利用2017年諾貝爾化學獎重要成果——冷凍電鏡技術,攻克了與基因表達有關的一種重要蛋白的結構難題。發表在最新一期《科學》雜志上的相關論文稱,蛋白結構顯示,流感病毒可與該蛋白中特定位點結合,摧毀細胞的基因表達能力,為深入研究流感、癌癥等疾病打開了一扇大門

    冷凍電鏡在結構生物學中的戰績

    冷凍電鏡在結構生物學中的戰績從NSC等頂刊的發文情況及源源不斷的生物大分子結構被解析出來,冷凍電鏡在結構生物學領域取得的巨大成功無需贅述。單單以中國大陸為例,基于冷凍電鏡技術在結構生物學領域取得的重大進展就十分可觀,具體如表1所示[5](2016年)。而隨著冷凍電鏡技術的大熱,國內的許多高校、科研院

    利用冷凍電鏡成功解析神經突觸超微結構

      記者從中國科大獲悉,該校合肥微尺度物質科學國家研究中心與生命科學學院畢國強、劉北明與周正洪教授合作課題組的研究成果——利用冷凍電子斷層三維重構技術(cryoET)與冷凍光電關聯顯微成像技術解析神經突觸超微結構。圖片來源網絡  2月7日,美國神經科學學會會刊《神經科學雜志》以封面形式報道了這一成果

    掃描電鏡——細胞內部結構冷凍割斷法

    該方法簡便,結構清晰,已得到廣泛應用。其操作方法如下:1) 取材和固定:為了使細胞結構清晰,不被過多的血細胞污染,可在取材前用灌注法沖洗。即先將動物麻醉,經腹主動脈注入生理鹽水或低分子量的右,切開下腔靜脈放血,至無血色為止。然后迅速取材,將樣品修成1mm×1mm×5mm大小,投入1%鋨酸溶液

    冷凍電鏡是什么

    在低溫下使用透射電子顯微鏡觀察樣品的顯微技術,就叫做冷凍電子顯微鏡技術,簡稱冷凍電鏡(cryo-electron microscopy, cryo-EM)。冷凍電鏡是重要的結構生物學研究方法,它與另外兩種技術:X射線晶體學(X-ray crystallography)和核磁共振(nuclear ma

    冷凍電鏡是什么

    冷凍電鏡,是用于掃描電鏡的超低溫冷凍制樣及傳輸技術(Cryo-SEM),可實現直接觀察液體、半液體及對電子束敏感的樣品,如生物、高分子材料等。能夠斬獲今年諾貝爾化學獎的原因是:諾獎委員會給出的獲獎理由原話是“for developing cryo-electron microscopy for th

    冷凍電鏡發展背景

    冷凍電鏡發展背景人類基因組計劃的完成,標志著科學已進入后基因組時代。雖然大量的基因序列得到闡明,但是生物大分子如何從這些基因轉錄、翻譯、加工、折疊、組裝,形成有功能的結構單元,尚需進一步的研究。后基因組時代人類面臨的一個挑戰是解析基因產物—蛋白質的空間結構,建立結構基因組學,并在原子水平上解釋核酸—

    什么是冷凍電鏡?

    冷凍電鏡,是用于掃描電鏡的超低溫冷凍制樣及傳輸技術,將樣品冷卻到液氮溫度,用于觀測蛋白、生物切片等對溫度敏感的樣品,通過對樣品的冷凍,可以降低電子束對樣品的損傷,減小樣品的形變,從而得到更加真實的樣品形貌。冷凍電鏡具有較好的穩定性和重復性并且操作簡便,管理方便的特點,通過對樣品的冷凍,可實現直接觀察

    冷凍電鏡是什么

    冷凍電鏡,是用于掃描電鏡的超低溫冷凍制樣及傳輸技術(Cryo-SEM),可實現直接觀察液體、半液體及對電子束敏感的樣品,如生物、高分子材料等。冷凍電鏡技術為何摘得2017年的諾貝爾化學獎撰文 | 何萬中(北京生命科學研究所研究員)2013年,冷凍電鏡技術的突破給結構生物學領域帶來了一場完美的風暴,迅

    什么是冷凍電鏡

    ?什么是冷凍電鏡?冷凍電鏡,全稱冷凍電子顯微鏡技術(Cryo-electron microscopy, Cryo-EM)(我大材料的小伙伴也快好好記住這個單詞,相信不就的將來就會成為檢索材料學文獻的熱門關鍵詞),是指將生物大分子快速冷凍后,在低溫環境下利用透射電子顯微鏡對樣品進行成像,再經圖像處理和

    冷凍電鏡技術總結

    冷凍電鏡技術從建立到現在在結構測定中取得了快速的發展,這也表明了了對整個細胞和細胞器的分子成分的空間結構的描述可能很快就會成為常規方法。冷凍電鏡單粒子法既可以對具有對稱結構的大分子進行研究,也適合于研究結構不規則的大分子復合物,對于分子量的上限沒有什么限制,理論上>100kD的分子在成像技術能夠保證

    冷凍蝕刻免疫電鏡技術

    實驗原理?冷凍蝕刻法(Freeze Ftching),也稱冷凍復型法(Freeze Replica)或冷凍切斷(Freeze Fracture),是研究生物膜結構的重要方法之一。其主要步驟首先是將樣品在液氮中冷凍,然后放到真空噴鍍儀中切斷,切斷后的切面上有細胞器,其間還有凍成洋的水分。再加熱使冰升華

    冷凍電鏡的原理

    冷凍電鏡是用于掃描電鏡的超低溫冷凍制樣及傳輸技術,可實現直接觀察液體、半液體及對電子束敏感的樣品,如生物、高分子材料等。樣品經過超低溫冷凍、斷裂、鍍膜制樣(噴金/噴碳)等處理后,通過冷凍傳輸系統放入電鏡內的冷臺(溫度可至-185℃)即可進行觀察。冷凍電鏡中的冷凍技術可以瞬間冷凍樣品,并在冷凍狀態下保

    冷凍電鏡制樣

    常規的冷凍方式冷卻速度緩慢,冷卻過程中,蛋白質水溶液會因結晶而變形扭曲,造成生物分子的結構的破壞。快速冷凍制樣是將樣品快速放入液氮冷卻的液態乙烷中,由于冷卻速度快,使得水分子還來不及結晶就被固定住,整個冷凍過程在數毫秒之內就完成了(冷凍速率>104℃/s),冷凍好的水以玻璃態存在,不存在晶體結構,能

    冷凍蝕刻免疫電鏡技術

    實驗概要本文介紹了冷凍蝕刻免疫電鏡技術,包括:冷凍蝕刻表面標記免疫電鏡技術和斷裂—標記免疫電鏡技術。實驗原理冷凍蝕刻法(Freeze Ftching),也稱冷凍復型法(Freeze Replica)或冷凍切斷(Freeze Fracture),是研究生物膜結構的重要方法之一。其主要步驟首先是

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载