CRISPR/Cas9技術在生命科學領域掀起了一場全新的技術革命,該技術已經廣泛應用于包括農作物在內的各種生物體的基因組編輯。科學工作者利用該技術,創造了大量的植物內源基因功能缺失的突變體,為植物的功能基因組學研究和應用研究做出了巨大的貢獻。然而對植物內源基因進行更為精確地修飾,如基因定點替換以及基因的定點插入等,仍然具有極大的挑戰性,這嚴重限制了CRISPR/Cas9技術在植物基因組學研究和農作物分子設計育種中的應用。 水稻(Oryza sativa)是世界上最重要的三大糧食作物之一,是全球一半以上人口賴以生存的基本食糧。防治雜草是水稻生產的主要問題之一,更是旱稻生產的關鍵。未進行雜草防治的水稻田一般減產5-15%,嚴重的減產15-30%。農民需要噴灑大量除草劑來防除雜草。草甘膦是目前世界上使用量最大的除草劑,因此研制草甘膦抗性的農作物新品種是國內外種子公司和科研單位的研究熱點。目前生產上推廣的抗草甘膦作物,幾乎全部為通......閱讀全文
今年,我國“大農業”科研領域又誕生了諸多令人驚奇的發現,每一條都與我們息息相關。它們涵蓋了觀賞農業、林業、作物、醫學等各個領域,包括睡蓮、玉米、硅藻等進展。為了展現這些成就,本報特此就我國農業科學家今年發表的大部分重要論文進行梳理,以饗讀者。野生玉米大芻草、SK、現代玉米自交系ZHENG58的
借助 CRISPR/Cas 系統介導的 HDR,實現優異等位基因替換和基因定點插入,進而創制農作物新種質,是農作物基因組編輯研究的熱點和重要課題之一。但目前這一技術的廣泛應用仍十分具有挑戰性,主要原因在于:1)CRISPR/Cas系統引起的基因組靶位點DNA序列雙鏈斷裂(Double-stran
截至2019年12月23日,中國學者在Cell,Nature及Science在線發表了107篇文章(2019年的Cell ,Nature 及Science 已經全部更新),iNature團隊對于這些文章做了系統的總結: 按雜志來劃分:Cell 發表了31篇,Nature 發表了44篇,Scie
不久前,袁隆平院士宣布了一項重大成果:水稻親本去鎘技術獲得突破,為解決鎘污染土地種植安全水稻提供了先進方案。這項重大成果是利用基因編輯技術實現的。 利用基因編輯技術進行農作物育種,如今已經成為國際科學競賽新的熱門領域,國內外都有前沿消息傳來。下面,我們特約請中國水稻研究所副研究員王春介紹有關這方面的
美國農業部對采用基因編輯技術的新型作物網開一面,是由于基因編輯后的作物,不含任何新引入的遺傳物質或外源DNA。當技術飛奔時,既面臨重新定義轉基因,也要思考監管如何收放。 在不到一周的時間里,美國農業部相繼豁免了一種基因編輯蘑菇和一種基因編輯玉米的監管。 它們都采用了一種名為CRISPR
基因組編輯技術可以定向修飾植物基因組,從而大大加速植物育種的進程,是實現作物精準育種的重要技術突破。然而,作物的許多重要農藝性狀是由基因組中的單個或少數核苷酸的改變或突變造成的。基于CRISPR/Cas系統的基因組編輯,可利用外源修復模板通過同源重組介導的修復方式(HDR)實現目標基因特定核苷酸
長期以來,科學家們一直想按照人類的設計定點改造特定基因以提高水稻的產量和質量,但定點基因改造技術在水稻等植物中一直沒有突破。 CRISPR-Cas 系統定點突變水稻基因 北京大學生命科學學院的瞿禮嘉教授實驗室利用最新的CRISPR-Cas系統成功地實現了對水稻特定基因的定點突變,效率
單核苷酸點突變是作物許多重要農藝性狀發生變異的遺傳基礎。單堿基的變異會導致氨基酸替換或蛋白質翻譯終止,使基因功能發生改變,從而有可能產生優良的等位基因與優異性狀。傳統誘變及單堿基突變篩選技術(如TILLING)需要進行基因組規模的篩選,耗時、耗力且鑒定到的點突變數目和種類有限。基因組編輯技術,特
單核苷酸點突變是作物許多重要農藝性狀發生變異的遺傳基礎。單堿基的變異會導致氨基酸替換或蛋白質翻譯終止,使基因功能發生改變,從而有可能產生優良的等位基因與優異性狀。傳統誘變及單堿基突變篩選技術(如TILLING)需要進行基因組規模的篩選,耗時、耗力且鑒定到的點突變數目和種類有限。基因組編輯技術,特
2019年上半年很快就結束了,iNature盤點了中國學者在Cell,Nature及Science發表的成果,我們發現總共有86篇(截至2019年6月24日),具體介紹如下: 4-6月發表的文章 【1】2019年6月21日,西北工業大學王文,中科院昆明動物研究所/BGI 張國捷及丹麥哥本哈根
基因組編輯技術CRISPR/Cas9被《科學》雜志列為2013年年度十大科技進展之一,受到人們的高度重視。CRISPR是規律間隔性成簇短回文重復序列的簡稱,Cas是CRISPR相關蛋白的簡稱。CRISPR/Cas最初是在細菌體內發現的,是細菌用來識別和摧毀抗噬菌體和其他病原體入侵的防御系統。圖片
基因組編輯技術可以定向修飾植物基因組,從而大大加速植物育種的進程,是實現作物精準育種的重要技術突破。然而,作物的許多重要農藝性狀是由基因組中的單個或少數核苷酸的改變或突變造成的。基于CRISPR/Cas系統的基因組編輯,可利用外源修復模板通過同源重組介導的修復方式(HDR)實現目標基因特定核苷酸
作為農業領域實力最強的高校之一,華中農業大學在作物遺傳育種、微生物學、果樹學、分子化學與分子生物學、遺傳學、細胞生物學等學科領域一直很有優勢。 近幾年,華中農業大學的這些優勢學科發展也都非常迅速。繼上個月一周連發3篇Nature子刊后,4月11日,華中農業大學3個研究團隊又同時發表了3篇頂尖論
來自中科院遺傳與發育生物學研究所的研究人員發表了題為“Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A”,在前期研究基礎上利用Cas9變體(nCas9-D10A)融合人類胞嘧啶脫
3月中國學者參與的多項研究在Nature雜志及其重要子刊上發表,其中包括天然免疫重要分子CFLAR在非酒精性脂肪肝炎(NASH)疾病進程中的關鍵負調控作用,棉花基因組研究領域的重大進展,以及Cas9變體單堿基編輯新成果。 首先來自武漢大學生科院等處的研究人員首次揭示了天然免疫重要分子CFLAR
內容:一、遺傳標記 二、DNA分子標記 三、染色體原位雜交 四、DNA分子標記的應用 長期以來,植物育種中選擇都是基于植株的表型性狀進行的,當性狀的遺傳基礎較為簡單或即使較為復雜但表現加性基因遺傳效應時,表型選擇是有效的。但水稻的許多重要農藝性狀為數量性狀,如
2016年,David Liu團隊在 Nature 期刊上首次報道了基于胞嘧啶脫氨酶APOBEC1(能催化C脫氨基變成U,而U在DNA復制過程中會被識別成T)和尿嘧啶糖基化酶抑制劑UGI(能防止尿嘧啶糖基化酶將U糖基化引起堿基切除修復)的單堿基編輯工具(BE3)首次實現可以在不引入DNA雙鏈斷裂
生命是“能夠自我營養并獨立生長和衰敗的力量”,這是亞里士多德(Aristotle,公元前384—322)通過動物、植物的研究對生命的哲學概括。動物也成為古代先哲們探索生命奧秘的主要對象之一,蓋倫(Galen,公元130—200)開創了動物解剖學和實驗生理學,他將來源于動物的知識推廣到對人體的認識
實驗概要植物生物學研究數據庫實驗步驟http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/home 英國 Top 植物種的snoRNA基因數據庫。 綜合 http://bioinformatics.psb.ugent.be/webt
中國實驗動物信息網:人源化小鼠在腫瘤生長和癌癥免疫學等研究領域有哪些方面應用?俞博士:在過去的50多年時間,研究者們通過將來自病人腫瘤移植到無胸腺裸鼠及SCID免疫缺陷小鼠的研究方法,已經成為驗證與評估人癌癥疾病治療效果方面非常有價值的工作。不幸的是,無胸腺裸鼠仍然保留了小鼠的先天免疫系統和B細胞,
經過特殊的算法,我們得到了2018年前10個月中國生物醫學風云榜人物及最火爆的3個重大學術界事件,能夠上榜的風云人物/事件,都曾長時間占據過100多個公生物醫學公眾號的頭版頭條。 在此,我們精選了其中的3個事件及16位風云榜人物。我們對其進行了劃分,分別是:6星級的3個事件,分別位諾貝爾獎,國
谷峰1,高彩霞2 1溫州醫科大學附屬眼視光醫院 眼視光學與視覺科學國家重點實驗室,浙江 溫州 325000 2中國科學院遺傳與發育生物學研究所 基因組編輯中心 植物細胞與染色體工程國家重點實驗室,北京 100101 人類社會的發展是一個漫長的自然歷史過程,期間人類與自然界的不斷“摩擦與碰
CRISPR-Cas系統是繼鋅指核酸酶(ZFNs)和TALEN核酸酶之后的另一個可精確定點編輯基因組DNA的新技術,具有設計構建簡單快速等優點。目前已在人類細胞系、斑馬魚、小鼠、果蠅和酵母等多個物種中利用,但CRISPR-Cas系統能否在植物中使用尚無報道。 中國科學院遺傳與發育生物學研究
CRISPR/Cas9是靶向基因變化的一種新方法。與其他方法一起,構成了所謂的基因組編輯工具箱的一部分。目前,基因組編輯主要討論的是醫學應用,相繼有使用基因組編輯治療人類疾病的研究出現,例如:CRISPR基因編輯助力肺癌治療;華人女學者用CRISPR技術改善遺傳性失明;我科學家用CRISPR糾正
【50】2019年4月12日,中科院上海藥物所徐華強,王明偉,浙江大學張巖及匹茲堡大學醫學院Jean-Pierre Vilardaga共同通訊在Science發表題為“Structure and dynamics of the active human parathyroid hormone r
關于公布2019年度國家杰出青年科學基金建議資助項目申請人名單的通告 根據《國家杰出青年科學基金項目管理辦法》的有關規定,現將2019年度國家杰出青年科學基金建議資助項目申請人名單予以公布。 建議資助項目申請人有違反《國家自然科學基金條例》、《國家杰出青年科學基金項目管理辦法》或其他學術不端
近幾年,由于CRISPR等工具的不斷問世,基因組編輯技術迎來了新的浪潮。然而,“CRISPR能完成90%的工作,但核心的專利仍掌握在西方人手中”,中科院動物所研究員王皓毅直言,一定要開發新的工具,尋找比CRISPR效率更高的酶。 在近日舉行的主題為“基因組編輯新技術的興起將帶來的沖擊”的中國
【51/52】2019年4月4日,清華大學柴繼杰課題組、中科院遺傳發育所周儉民課題組和清華大學王宏偉課題聯合同期背靠背發表兩篇重量級Science文章,完成了植物NLR蛋白復合物的組裝、結構和功能分析,揭示了NLR作用的關鍵分子機制,是植物免疫研究的里程碑事件。兩篇文章分別是: "Li
1.Science:我國科學家揭示人類早期胚胎發育中的組蛋白修飾重編程 doi:10.1126/science.aaw5118 組蛋白修飾調節基因表達和發育。在一項新的研究中,為了解決在人類早期發育中組蛋白修飾如何發生重編程,中國清華大學生命科學學院的頡偉(Wei Xie)課題組、鄭州大學第
5月22日,科技部官網發布了《關于對國家重點研發計劃干細胞及轉化研究等6個重點專項2018年度項目申報指南征求意見的通知》,其中,“干細胞及轉化研究”重點專項、“蛋白質機器與生命過程調控”重點專項、“納米科技”重點專項 與生物醫學領域相關。 關于對國家重點研發計劃干細胞及轉化研究等6個重點專項