• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • Antpedia LOGO WIKI資訊

    PNAS熱點文章:表觀基因組可因環境而改變

    長期以來,人們普遍認為作為有機體發育關鍵步驟的甲基化只是靜態地DNA修飾,不會隨環境條件變化而改變。Salk生物研究所的研究人員發現,處于逆境下植物的DNA甲基化模式會發生變化,從而改變對基因的調控。 科學家發現植物遭遇致病菌后,其表觀遺傳學密碼會發生廣泛的大量改變,DNA中的表觀遺傳學密碼是協助調控基因表達一種指令信息。研究顯示,這些表觀遺傳學改變與負責調控植物脅迫應答的基因活性有關,這說明表觀基因組能幫助植物對致病菌和其他環境脅迫產生抗性。文章發表在Proceedings of the National Academy of Sciences雜志上。 “這意味著表觀基因組并不只是一種靜態指令,這種指令也能根據植物的經歷進行重寫,”該研究的領導者,Salk生物研究所基因組分析實驗室的Joseph Ecker教授說。“我們的研究以及其他研究者的發現共同證明,生活經歷會給DNA打下印記。” ......閱讀全文

    Cell Res重點論文:單細胞表觀多組學測序技術最新突破

      2017年6月16日,北京大學生命科學學院生物動態光學成像中心湯富酬課題組在《Cell Research》雜志在線發表了題為“Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells”的研

    Cell Res重點論文:單細胞表觀多組學測序技術最新突破

      2017年6月16日,北京大學生命科學學院生物動態光學成像中心湯富酬課題組在《Cell Research》雜志在線發表了題為“Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells”的研

    作物基因組學研究進展

      摘要:農作物基因組學研究的發展,對于有效利用現代分子生物學手段進行物種的遺傳改良發揮了重要作用。隨著測序技術的發展,已經實現對重要農作物,如水稻、小麥、玉米、大豆、油菜、棉花、蔬菜等作物基因組的測序或重測序,在此基礎上完成對控制重要農藝性狀基因的克隆和鑒定。本文綜述了2017年度主要農作物基因組

    DNA甲基化研究方法的回顧與評價

    摘要: DNA甲基化是表觀遺傳學(Epigenetics)的重要組成部分,在維持正常細胞功能、遺傳印記、胚胎發育以及人類腫瘤發生中起著重要作用,是目前新的研究熱點之一。隨著對甲基化研究的不斷深入,各種各樣甲基化檢測方法被開發出來以滿足不同類型研究的要求。這些方法概括起來可分為三類:基因組整體水平的甲

    外源基因在真核細胞中的表達系統

    1. 真核生物表達的優越性和必要性① 真核生物具有轉錄后加工系統,可識別并刪除基因中的內含子,剪切加工為成熟mRNA.②具備完善的翻譯后加工系統,可進行糖基化、乙酰化等修飾,使蛋白形成正確的天然構型,因而真核生物表達系統產生的蛋白更接近天然狀態,有利于其功能、生物活性的研究。③某些真核細胞可將基因表

    DNA甲基化研究方法的回顧與評價(圖)

    摘要: DNA 甲基化是表觀遺傳學(Epigenetics)的重要組成部分,在維持正常細胞功能、遺傳印記、胚胎發育以及人類腫瘤發生中起著重要作用,是目前新的研究熱點之一。隨著對甲基化研究的不斷深入,各種各樣甲基化檢測方法被開發出來以滿足不同類型研究的要求。這些方法概括起來可分為三類:整體水平的甲

    克隆基因的表達(expression of cloned gene)-3

    (3)原核生物的基因組基本上是單倍體,而真核基因組是二倍體。(4)如前所述,細菌多數基因按功能相關成串排列,組成操縱元的基因表達調控的單元,共同開啟或關閉,轉錄出多順反子(polycistron)的mRNA;真核生物則是一個結構基因轉錄生成一條mRNA,即mRNA是單順反子(monocistron)

    看表觀新修飾-6mA甲基化如何助力IF飆升!

      DNA甲基化修飾是表觀遺傳研究的熱點之一,我們通常認為DNA甲基化就是胞嘧啶甲基化(5-methylcytosine, 5mC),卻不知道隨著測序技術的快速發展,科研者們已經在真核生物中(果蠅 、真菌、萊茵衣藻、秀麗隱桿線蟲等)發現了一種新的DNA甲基化修飾—DNA-6mA甲基化,且DNA-6m

    表觀新修飾-6mA甲基化助力IF飆升(一)

    DNA甲基化修飾是表觀遺傳研究的熱點之一,我們通常認為DNA甲基化就是胞嘧啶甲基化(5-methylcytosine, 5mC),卻不知道隨著測序技術的快速發展,科研者們已經在真核生物中(果蠅 、真菌、萊茵衣藻、秀麗隱桿線蟲等)發現了一種新的DNA甲基化修飾—DNA-6mA甲基化,且DNA-

    表觀遺傳學和人類疾病

    上個世紀50年代初,Watson和Crick建立了DNA分子結構模型,極大程度地促進了生命科學的發展。自此遺傳學便成為現代醫學研究領域中一個重要的分支。人類已經認識到基因突變可以導致疾病的發生,如慢性進行性舞蹈病(Huntington's chorea, Hc)和囊性纖維化等。近年來

    Science解讀甲基化組新觀點

      在真核生物中,DNA甲基化通常發生在CG中的胞嘧啶上。由于甲基化不會改變DNA序列,它被視為一種表觀遺傳學標志。DNA甲基化可以在細胞分裂過程中延續到子代細胞,這一機制現在已經相當明確。而這種繼承性使DNA甲基化成為儲存表觀遺傳學記憶的潛在途徑,這種記憶包括環境或發育過程中的基因調控。不過要證實

    作物基因組學研究進展(二)

    ⑵小麥基因組研究小麥是全球最重要的糧食作物之一,小麥的穩產和增產對我國乃至全世界糧食安全的影響舉足輕重。近年來由于全球氣候變化、環境變化的影響,小麥生產面臨嚴峻的挑戰,對于小麥的育種和品種改良工作提出了新的要求。普通小麥(Triticum aestivum L.)是3個不同亞基因組形成的異源

    RNAi總結

    RNA干涉(RNAi)是指雙鏈RNA分子使基因表達沉寂的現象,是在線蟲中發現的,在 1998年的一篇Nature論文中被公諸于眾。過去幾年中,科研工作者已明確轉錄后基因沉默現象普遍存在于動、植物中,在機體防御病毒入侵和轉座子沉默效應中起著重要作用。近年來的研究表明,將與mRNA對應的正義RNA和反義

    確定生物芯片實驗研究目標

    目前生物芯片尤其是基因芯片已廣泛用于醫學研究之中,已有很多商業化生產的生物芯片產品銷售,研究者直接可以選擇成型的產品使用,不需要自己制備芯片,因此如何正確使用芯片解決研究中的生物學問題是研究者更關注的。     基因芯片設計是最重要的部分,它關系到最終結果能否

    狙擊艾滋病毒――“引蛇出洞”還是“關門打狗”?

      曾慶平   有很多非專業或跨專業人士對于人類為何數十年攻克不了艾滋病難題感到迷惑不解,那是因為他們不太了解艾滋病毒致病的“特洛伊木馬”機制。   艾滋病毒之所以能“摧毀”人類的免疫系統,是因為它們專門感染并殺死免疫細胞。不過,只要它們在免疫細胞內復制并產生新的病毒,人體都能立即識別它們并設法

    甲基化領域重要研究成果解讀!

      本文中,小編整理了近年來科學家們在甲基化研究領域取得的重要研究成果,與大家一起學習!  【1】Science:重大進展!揭示DNA甲基化增強基因轉錄機制  doi:10.1126/science.aar7854  DNA甲基化(DNA methylation)為DNA化學修飾的一種形式,能夠在不

    基因技術專題-2

    RNAi技術RNA干擾(RNA interference, RNAi)是近年來發現的研究生物體基因表達、調控與功能的一項嶄新技術,它利用了由小干擾RNA(small interfering RNA, siRNA)引起的生物細胞內同源基因的特異性沉默(silencing)現象,其本質是siRNA與對應

    Genome Biol:DNA破裂或會重新調節癌癥基因的控制機制

      理解介導癌癥基因組中廣泛DNA損傷的機制一直以來都是癌癥研究人員非常感興趣的研究領域,近日,一項刊登在國際雜志Genome Biology上的研究報告中,來自貝勒醫學院等機構的科學家們通過研究發現,基因組結構的變異或許能作為人類癌癥中DNA甲基化改變(基因控制的一種形式)的一種特殊機制。  文章

    畢赤酵母表達(pichia pastoris expression )實驗手冊(1)

    大腸桿菌表達系統最突出的優點是工藝簡單、產量高、周期短、生產成本低。然而,許多蛋白質在翻譯后,需經過翻譯后的修飾加工,如磷酸化、糖基化、酰胺化及蛋白酶水解等過程才能轉化成活性形式。大腸桿菌缺少上述加工機制,不適合用于表達結構復雜的蛋白質。另外,蛋白質的活性還依賴于形成正確的二硫鍵并折疊成高級結構,在

    我是“神藥”——二甲雙胍抑癌機制研究

      上海交通大學附屬第一人民醫院張箴波團隊以題為“Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanis

    上海生科院:用CRISPR靶定DNA去甲基的新方法

      在哺乳動物細胞中,DNA甲基化精密地調節基因的表達,從而在許多生理和病理過程中起著舉 足輕重的作用。近期,來自中科院上海生命科學研究院“百人計劃“胡榮貴研究員帶領的研究小組,在《Cell Discovery》發表題為“A CRISPR-based approach for targeted DN

    新的基因編輯領域突破口—表觀遺傳調控

      幾十年來,DNA一直被認為是決定生命遺傳信息的核心物質,但是近些年不斷的研究表明,生命遺傳信息從來就不是基因所能完全決定的,比如科學家們發現,可以在不影響DNA序列的情況下改變基因組的修飾,這種改變不僅影響個體的發育,而且還可遺傳給后代。如腫瘤等多種疾病并非僅由基因突變而引起,且與DNA和組蛋白

    新的基因編輯領域突破口—表觀遺傳調控

      幾十年來,DNA一直被認為是決定生命遺傳信息的核心物質,但是近些年不斷的研究表明,生命遺傳信息從來就不是基因所能完全決定的,比如科學家們發現,可以在不影響DNA序列的情況下改變基因組的修飾,這種改變不僅影響個體的發育,而且還可遺傳給后代。如腫瘤等多種疾病并非僅由基因突變而引起,且與DNA和組蛋白

    點評Nature背靠背 |浙大教授解釋基因敲除為何沒有表型

      Robustness指一個復雜系統適應和應對內部和外界擾斷而行使正常功能的能力。遺傳系統健壯性(genetic robustness)指一個生命體能緩沖基因組中有害突變的能力。突變是生命進化的原動力,而有害突變是致死。一個穩定的遺傳系統既能緩沖突變同時進行世代更迭,這樣本體能維持正常功能,突變在

    【人民日報海外版】中國科學家揭開人類胚胎奧秘

      記者近日從中國科學院獲悉,該院北京基因組所與國內多家科研機構合作,在國際上首次揭示了人類胚胎進行有序基因表達、發育進化的奧秘。研究成果于3月9日發表于國際頂級學術期刊《細胞》上。  人類的生命從受精卵開始,一個受精卵如何發育成一個含有200多種細胞類型、36個重要器官的復雜有機體,是生命科學最大

    一文了解甲基化研究領域新進展!

      本文中,小編整理了多篇重要研究成果,共同解讀科學家們在甲基化研究領域取得的新進展,分享給大家!圖片來源:Vossman/ Wikipedia  【1】Nature:母體維生素C調節DNA甲基化重編程和生殖細胞產生  doi:10.1038/s41586-019-1536-1  發育通常被認為是在

    Cancer Cell專題:癌癥表觀遺傳學

      癌癥中的基因調控與反調控一直是人們關注的熱點,現在這一領域已經取得了很大的進展。Cell旗下的Cancer Cell雜志本月特別推出專題,推薦了四篇有代表性的癌癥表觀遺傳學文章。  Vulnerabilities of Mutant SWI/SNF Complexes in Cancer  癌癥

    程曉東《自然》文章揭示表觀遺傳學研究的新線索

    來自美國Emory大學華裔教授程曉東(Xiaodong Cheng)領導的研究組發現了小鼠基因組中DNA序列的一種特殊模式,該模式在DNA分子調節基因表達的方式中起到基礎性作用。該研究組與來自德國Jacobs大學的同事在8月22日的的《自然》雜志網絡版上公布了這些發現。 自從科學家破解了構成人類

    中國科學家打開人類胚胎“基因表達”的認知大門

      記者從中國科學院北京基因組所獲悉,由該所研究員劉江團隊與山東大學附屬生殖醫院陳子江團隊、廣州醫科大學劉見橋團隊合作,在國際上首次研究出人類胚胎合子基因組的激活機制,進而揭示了人類胚胎發育和進化的奧秘,相關研究已于3月9日在國際頂級學術期刊《細胞》(CELL)發表。人類的生命始于受精卵,

    老年性癡呆的動物模型及評價

      第一節 老年癡呆的定義   阿爾茨海默氏病(Alzheimer’s disease,AD),又稱老年性癡呆,是一種與衰老相關,以認知功能下降為特征的漸進性腦退行性疾病或綜合癥。病人整個大腦彌散性萎縮并出現明顯的病 理組織學改變——老年斑(senile plaque, SP)(或神經炎性斑,ne

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载