• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • Antpedia LOGO WIKI資訊

    全基因組的比較基因組雜交技術介紹

    Whole-Genome and Custom Fine-Tiling Array CGHComparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and your sample genome. NimbleGen offers two high-definition array CGH products: whole-genome array CGH and fine-tiling array CGH. Whole-genome CGH measures copy number differences in DNA across entire genomes, while fine-tiling CGH determines breakpoints at ultrahigh re......閱讀全文

    海洋所科研人員繪制完成牡蠣全基因組序列圖譜

      近日,牡蠣基因組計劃(Oyster Genome Project,OGP)項目組宣布,歷時兩年的牡蠣基因組序列圖譜終于繪制完成。這是世界上第一張養殖貝類的全基因組序列圖譜,標志著基于短序列的高雜合度基因組拼接和組裝技術獲得了重大突破。據悉,目前的基因組圖譜已達到國際領先的基因組圖

    【盤點】單細胞測序研究進展一覽

      細胞是生物學的基本單位,近年來研究人員正努力地嘗試將它們進行單個分離、研究和比較。而應用而生的就是單細胞測序技術,該技術是指DNA研究中涉及測序單細胞微生物相對簡單的基因組,更大更復雜的人類細胞基因組。而隨著測序成本的大幅度下降,破譯來自單細胞的30億堿基的基因組并對逐個細胞進行序列比較已經開始

    高通量測序技術研究進展介紹

      第二代測序技術, 又稱新一代測序技術, 是相應于以Sanger 測序法為代表的第一代測序技術而得名。第二代測序中3種主流測序技術分別為依次出現的 Roche/454 焦磷酸測序(2005 年)、Illumina/Solexa 聚合酶合成測序(2006 年)和 ABI/SOLiD 連接酶測序(

    分子標記

    內容:一、遺傳標記 二、DNA分子標記 三、染色體原位雜交 四、DNA分子標記的應用 長期以來,植物育種中選擇都是基于植株的表型性狀進行的,當性狀的遺傳基礎較為簡單或即使較為復雜但表現加性基因遺傳效應時,表型選擇是有效的。但水稻的許多重要農藝性狀為數量性狀,如

    謝曉亮院士:單分子技術透視生命之謎

      2012和2013年,由北京大學多個研究團隊合作完成的世界首個高精度人類男性和女性個人遺傳圖譜相關論文相繼發表于《科學》和《細胞》雜志。這一工作采用的單細胞DNA擴增技術MALBAC,與以前的技術相比,該技術將單細胞全基因組測序的精確度大幅度提高,以至于能夠發現個別細胞之間的遺傳差異。  MAL

    分子雜交技術(一)

    一、概述  前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交

    分子雜交技術(一)

    一、概述  前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交

    分子雜交

    一、雜交通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交可在DNA與DNA、RNA與RNA或RNA與DNA的

    北大謝曉亮教授:單分子技術透視生命之謎

    2012和2013年,由北京大學多個研究團隊合作完成的世界首個高精度人類男性和女性個人遺傳圖譜相關論文相繼發表于《科學》和《細胞》雜志。這一工作采用的單細胞DNA擴增技術MALBAC,與以前的技術相比,該技術將單細胞全基因組測序的精確度大幅度提高,以至于能夠發現個別細胞之間的遺傳差

    常用的分子生物學基本技術

    核酸分子雜交技術由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。其基本原理是具有一定同源性的原條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補原成雙鏈。雜交的

    酵母雙雜交技術及其在蛋白質組研究中的應用

         作為后基因組時代出現的新興研究領域之一, 蛋白質組學(proteomics)正受到越來越多的關注。 蛋白質組學的研究目標是對機體或細胞的所有蛋白質進行鑒定和結構功能分析。 蛋白質組學的研究不局限任何特定的方法。 高分辨率的蛋白質分離技術如二維凝膠電泳和高效液相

    Nat Rev Genetics | 環狀RNA的合成與功能

      環狀RNA(circular RNA,circRNA)是一種新興的內源性非編碼RNA(noncoding RNA,ncRNA),是繼microRNA (miRNA)以及long noncoding RNA (IncRNA)后非編碼RNA家族中極具研究潛力的新成員。越來越多的研究表明,環狀RNA具

    復旦大學等發現導致先天性脊柱側凸新機理

      近日,《新英格蘭醫學雜志》以原創性論文形式,發表了由復旦大學與中國醫學科學院北京協和醫院共同牽頭,聯合首都兒科研究所、美國Baylor醫學院等多家國內外單位合作完成的研究論文《TBX6基因無效變異聯合常見亞效等位基因導致先天性脊柱側凸》。  先天性脊柱側凸的病因長期不明,已有研究提示DNA變異在

    三分鐘了解4代基因測序技術

      基因檢測技術是近年來伴隨“精準醫療”概念的提出而迅速發展起來的一門科學技術,它可以從基因組機制上闡釋遺傳學、發育生物學、進化生物學等學科的經典概念,在全基因組水平延伸了染色體高級構象、細胞異質性、功能模塊等新概念,為精準醫學開辟了應用性新領域。  近年來,隨著分子水平的基因檢測技術平臺不斷發展和

    金魚草:植物遺傳學研究的“先驅者”

       大約5-6千萬年前,具有兩列對稱花的顯花植物金魚草的“祖先”出現了。  經歷數千萬年的進化,今日所見的金魚草誕生了,其花色愈發多樣,“顏值”越來越高。綻放之時,花瓣“裂”為上下兩唇,上唇為對稱的兩裂,下唇3裂,酷似一條金魚,也因此得名為“金魚草”。  金魚草因何“降生”在這個世界?金魚草花體變

    EST技術及其在基因全長cDNA克隆上的應用策略

    第二軍醫大學細胞生物學教研室;上海200433 何志穎;姚玉成(綜述);胡以平(審校)關鍵詞:EST技術;“電子”基因克隆;生物信息學;基因摘要: 隨著人類基因組計劃的順利進行,EST技術被廣泛應用于基因識別、繪制基因表達圖譜、尋找新基因等研究領域。利用人類基因組研究不斷產生的數據,從ES

    PerkinElmer成功收購上海浩源生物 擴展中國分子診斷市場

      2012年11月22日,專注于人類與環境健康和安全的全球領導者珀金埃爾默公司在上海新世界麗笙大酒店召開“珀金埃爾默戰略收購上海浩源生物技術有限公司”媒體見面會。珀金埃爾默診斷事業部副總裁、亞太地區診斷部總經理張晟先生,上海浩源生物技術有限公司技術總監楊國翠女士,上海

    尋找瘧原蟲耐藥基因

      對瘧原蟲(malaria parasites)進行的全基因組測序研究(Whole-genome sequencing)發現了與瘧原蟲對青蒿素類抗瘧藥(artemisinin-based drug)耐藥機制有關的基因組位點。這一發現有助于科學家們發現瘧原蟲的耐藥機制,以及這種耐藥機制的傳播

    酵母雙雜交技術及其在蛋白質組研究中的應用

    摘要  蛋白質組學是在后基因組時代出現的一個新興的研究領域, 它的主要任務是識別鑒定細胞、組織或機體的全部蛋白質, 并分析蛋白質的功能及其模式。 因此, 揭示蛋白質組中蛋白質間的相互作用關系也是蛋白質組學的重要內容之一。 酵母雙雜交技術是用來檢測蛋白質間是否相互作用的一

    香山科學會議綜述:學科交叉為植物染色體工程注入新活力

              安徽中醫學院中藥標本中心收藏有藥用植物蠟葉標本7萬多份,數量居全國醫藥院校之首。除一般的標本外,還有許多地道藥材和特色藥材的專題標本和珍稀瀕危的模式標本,為研究安徽和全國中藥材資源,以及普及中藥知識提供了豐富的實物

    浙大張天真團隊揭示陸地棉與海島棉的基因差別

      陸地棉產量高、適應性強;海島棉產量低,纖維品質較優。長久以來,人們一直想解析陸地棉和海島棉在產量、適應性和品質方面差異的原因,并試圖培育出綜合二者高產、纖維優良、適應性強的棉花新品種,但是一直沒有成功。  近日,浙江大學農業與生物技術學院教授張天真團隊在《自然—遺傳學》發表研究論文,報道了高質量

    常用的分子生物學基本技術1

    DNA重組技術(或基因工程)是20世紀生物學的偉大成就,并已滲透到生命科學包括醫學 各個領域,為腫瘤的實驗研究和臨床診斷及治療提供了嶄新的技術和有用的工具。本附錄扼要介紹在分子腫瘤學領域中常用的分子生物學基本技術及其在腫瘤研究中的應用,著重介紹它們的原理和應用。至于具體的技術方法和操作步驟可參閱《分

    中國科學家繪制小麥A、D基因組草圖

      作為世界三大糧食作物之一,小麥養活了全球40%的人口,提供人類營養所需的20%的熱能和蛋白質。   隨著基因組學的發展,水稻和玉米的基因組相繼被破譯,但關于小麥基因組的測序研究依然困難重重、進展緩慢,小麥基因組成了橫在科學家面前的一座大山。   中科院遺傳與發育生物學研究所植物細胞與染色體工

    第一屆中國分子診斷技術大會召開

      21世紀的第一個10年是生命科學及其相關技術飛速發展的10年,以生物芯片為代表的一大批分子診斷技術日漸成熟,并正在以其巨大的優勢和潛力成為保障人類健康最重要的生物技術之一。中國工程院醫藥衛生學部、中國醫師協會檢驗醫師分會、中華醫學會檢驗分會等6月22日~24日在北京聯合主辦第一屆中

    分子診斷技術步入快速發展新時代

      21世紀的第一個10年是生命科學及其相關技術飛速發展的10年,以生物芯片為代表的一大批分子診斷技術日漸成熟,并正在以其巨大的優勢和潛力成為保障人類健康最重要的生物技術之一。中國工程院醫藥衛生學部、中國醫師協會檢驗醫師分會、中華醫學會檢驗分會等6月22日~24日在北京聯合主辦第一屆

    華大基因從1%到中國人的個體化基因組研究

      自1999年中國作為唯一的一個發展中國家加入人類基因組計劃,到目前為止,已經獨立完成了水稻和家蠶等大型基因組研究,并參與了家雞、家豬、木瓜等多個重要動植物基因組圖譜制作,在2007年還首次向世界公布了第一個中國人的個體化基因組序列。   中國雖然在這一領域起步較晚,但發展迅猛……   在深圳

    我國生物芯片技術發展備受矚目

      21世紀的第一個10年是生命科學技術飛速發展的10年,以生物芯片為代表的一大批分子診斷產品日漸成熟,并正在以其巨大的優勢和應用潛力成為保障人類健康的重要工具。  在中國工程院醫藥衛生學部、中國醫師協會檢驗醫師分會、中華醫學會檢驗分會等于6月22日~24日在北京召開的“首屆中國分子診斷技

    27篇SNC論文!他憑這些學術成就獲億元融資

      基因修飾動物是研究在發育和疾病中基因功能的重要工具。CRISPR/Cas9系統有效的應用于構建基因敲除和敲入小鼠。而楊輝團隊正好專注于該領域。  楊輝,30歲時,就成為中科院上海生科院神經所研究員;2015年,入選國家“青年千人計劃”;2019年,楊輝博士獲得國家杰出青年基金資助。  由楊輝創辦

    Nature:RNA 修飾研究有助表觀轉錄組學進一步發展

      這是一個與 mRNA 結合的細菌核糖體的分子模式圖,該核酸蛋白復合體正在合成蛋白質。  隨著科研人員逐漸揭開 RNA 修飾的奧秘,幫助我們了解表觀轉錄組學(epitranscriptomics)的工具也變得越來越多了。  2004 年,以色列特拉維夫大學(Tel Aviv University

    蘋果的紅色從哪來

      紅蘋果,人人愛。可是,蘋果皮為什么能進化出誘人的紅色,是個有趣而復雜的問題。4月2日,《自然—通訊》在線發表了中國科學家詮釋紅蘋果奧秘的最新成果。中國農業科學院果樹研究所(以下簡稱果樹所)蘋果資源與育種創新團隊在完成蘋果花藥培育純系高質量基因組測序的基礎上,揭示了反轉座子控制紅蘋果著色的分子機制

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载