帶你認識分子光譜F4
前面我們已經分享了包括紫外、紅外、拉曼熒光等光譜,今天就說說分子光譜中最著名的四個分析方法,分子光譜F4! 作為光譜分析的一個重要分支,分子光譜是分析化學工作者常用的一種獲得物質定量和定性信息的手段,因其測試簡單且結構信息豐富,在生產加工和科研中發揮著舉足輕重的作用。前面我們已經分享了包括紫外、紅外、拉曼熒光等光譜,今天就說說分子光譜中最著名的四個分析方法,分子光譜F4! F1. 紫外-可見光譜法(ultraviolet and visible spectroscopy,UV-vis) F2. 中紅外光譜法(infrared spectroscopy, IR) F3. 近紅外光譜法(near infrared spectroscopy, NIR) F4. 拉曼光譜法(Ramanspectroscopy) 以上即是分子光譜四大帥小伙,下面就讓我們來全面認識他們! 一.定義 F1.......閱讀全文
連續光譜-線狀光譜-吸收光譜-發射光譜的區別
區別和關系:連續態光譜和線狀光譜都是發射/吸收光譜,而吸收光譜只是吸收,發射光譜發射而已。后兩者包含于前兩者。連續光譜是原子中處于束縛態的電子躍遷到自由散射態或者相反所產生的發射/吸收光譜, 因為沒有確定的能級間隔, 表現出寬泛的 ,不確定的光譜帶, 叫做連續光譜。線狀光譜是原子中電子的兩個束縛態能
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紅外光譜是什么光譜
紅外光譜是分子能選擇性吸收某些波長的紅外線,而引起分子中振動能級和轉動能級的躍遷,檢測紅外線被吸收的情況可得到物質的紅外吸收光譜。又稱分子振動光譜或振轉光譜。當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到
紫外光譜的光譜圖
右圖是乙酸苯酯的紫外光譜圖。紫外光譜圖提供兩個重要的數據:吸收峰的位置和吸收光譜的吸收強度。從圖中可以看出,化合物對電磁輻射的吸收性質是通過一條吸收曲線來描述的。圖中以波長(單位nm)為橫坐標,它指示了吸收峰的位置在260 nm處。縱坐標指示了該吸收峰的吸收強度,吸光度為0.8。吸收光譜的吸收強度是
連續光譜,線形光譜,吸收光譜什么區別
太陽光屬于太陽光譜,連續光譜、線形光譜及吸收光譜的具體區別如下:1、含義上的區別連續光譜是指光(輻射)強度隨頻率變化呈連續分布的光譜。根據量子理論,原子、分子可處于一系列分立的狀態。兩個態間的躍遷產生光譜線。線狀光譜,又稱原子光譜,單原子氣體或金屬蒸氣發出光譜均屬線狀光譜。吸收光譜是指物質吸收光子,
連續光譜,線形光譜,吸收光譜什么區別
太陽光屬于太陽光譜,連續光譜、線形光譜及吸收光譜的具體區別如下:1、含義上的區別連續光譜是指光(輻射)強度隨頻率變化呈連續分布的光譜。根據量子理論,原子、分子可處于一系列分立的狀態。兩個態間的躍遷產生光譜線。線狀光譜,又稱原子光譜,單原子氣體或金屬蒸氣發出光譜均屬線狀光譜。吸收光譜是指物質吸收光子,
紅外光譜-紫外光譜-拉曼光譜和核磁共振光譜的區別
一般這些測試手段都是聯用的,MS用來提供化合物的相對分子質量,化學式,某些官能團等,注意,沒有結構;NMR常用的就兩種,H譜和C譜,H譜含氫基團的個數、類型等以及某個基團和其他基團的關系,C譜:碳原子數及C的歸屬及化合物類型,很明顯H譜和C譜是需要聯用的,注意對比MS;IR,很簡單了,只是官能團,可
原子光譜是明線光譜嗎?
稀薄氣體發光是由不連續的亮線組成,這種發射光譜又叫做明線光譜,原子產生的明線光譜也叫做原子光譜。原子光譜,是由原子中的電子在能量變化時所發射或吸收的一系列波長的光所組成的光譜。原子吸收光源中部分波長的光形成吸收光譜,為暗淡條紋;發射光子時則形成發射光譜,為明亮彩色條紋。兩種光譜都不是連續的,且吸收光
光纖光譜儀的光譜范圍
光纖光譜儀而言,光譜范圍通常在200nm-2500nm之間。由于要求比較高的分辨率就很難得到較寬的光譜范圍;同時分辨率要求越高,其光通量就會偏少。對于較低分辨率和較寬光譜范圍的要求,300線/mm的光柵是通常的選擇。如果要求比較高的光譜分辨率,可以通過選擇3600線/mm的光柵,或者選擇更多像素分辨
高光譜成像光譜儀
高光譜成像光譜儀是一種用于農學領域的分析儀器,于2016年8月11日啟用。 技術指標 技術參數:光譜范圍1.0–2.5μm;空間像素384;F數F2.0,FOV16°;像素跨軌和延軌FOV,跨軌:0.73毫弧度,延軌:0.73毫弧度;光譜SAMPL5.45nm;噪聲150e;峰值信噪比>11
光纖光譜儀的光譜范圍
光纖光譜儀是光譜儀的一個分支,以體積小、采集光譜速度快為特點。相較于大型光譜儀通過轉光柵獲取不同波長的光譜信息,光纖光譜儀利用了陣列CCD同時采集不同波長的光譜信息,結構上更加穩定。又因為光纖光譜儀外型的小巧,目前已經廣泛應用于工業領域。 光纖光譜儀一般都包括入射狹縫、準直鏡、色散元件(光柵或
原子發出的光譜是什么光譜
原子光譜,是由原子中的電子在能量變化時所發射或吸收的一系列波長的光所組成的光譜。原子吸收光源中部分波長的光形成吸收光譜,為暗淡條紋;發射光子時則形成發射光譜,為明亮彩色條紋。兩種光譜都不是連續的,且吸收光譜條紋可與發射光譜一一對應。每一種原子的光譜都不同,遂稱為特征光譜原子光譜包括發射光譜和吸收光譜
pl光譜和ple光譜的區別
激發光譜(PLE)和發射光譜(PL)。激發光譜:固定發射光的波長,改變激發光的波長,記錄熒光強度隨激發波長的變化。發射光譜:固定激發光的波長,記錄不同發射波長處熒光強度隨發射波長的變化。無論是激發還是發射熒光光譜圖,其都是記錄發射熒光強度隨波長的變化。如果熒光光譜中縱坐標為強度,橫坐標為波長。那么就
pl光譜和ple光譜的區別
激發光譜(PLE)和發射光譜(PL)。激發光譜:固定發射光的波長,改變激發光的波長,記錄熒光強度隨激發波長的變化。發射光譜:固定激發光的波長,記錄不同發射波長處熒光強度隨發射波長的變化。無論是激發還是發射熒光光譜圖,其都是記錄發射熒光強度隨波長的變化。如果熒光光譜中縱坐標為強度,橫坐標為波長。那么就
拉曼光譜,布里淵散射光譜,紅外吸收光譜的區別
飛秒檢測發現拉曼光譜是基于分子的對稱振動產生的能量輻射和吸收,布里淵散射也屬于喇曼效應,即光在介質中受到各種元激發的非彈性散射,其頻率變化表征了元激發的能量。與拉曼散射不同的是,在布里淵散射中是研究能量較小的元激發,如聲學聲子和磁振子等。而紅外吸收光譜是基于分子的不對稱振動而產生的吸收和能量輻射
光譜種類
? 發射光譜 物體發光直接產生的光譜叫做發射光譜。只含有一些不連續的亮線的光譜叫做明線光譜。明線光譜中的亮線叫做譜線,各條譜線對應于不同波長的光。稀薄氣體或金屬的蒸氣的發射光譜是明線光譜。明線光譜是由游離狀態的原子發射的,所以也叫原子光譜。觀察氣體的原子光譜,可以使用光譜管,它是一支中間比較細
高光譜成像光譜掃描的概念
高光譜成像是一種新興的技術,可以在儀器的視場范圍內同時快速測量和分析多個物體的光譜構成。這些成像系統用在多個工業和商業領域,比如高速在線檢測和嚴密的質量控制工序。一般說來,在加工應用中捕捉精確的光譜信息,面臨著機器視覺系統簡單或單點光譜(single-point)測量的問題。這些儀器系統的成本很高,
連續光譜和明線光譜的區別
稀薄氣體發光是由不連續的亮線組成,這種發射光譜又叫做明線光譜,原子產生的明線光譜也叫做原子光譜。固體或液體及高壓氣體的發射光譜,是由連續分布的波長的光組成的,這種光譜做連續光譜。例如電燈絲發出的光、熾熱的鋼水發出的光都形成連續光譜.
拉曼光譜的光譜分析
實驗做出的譜圖(見附圖,以波長為單位)標準的譜圖(如下,以波數為單位)通過的結構分析解釋光譜:分子為四面體結構,一個碳原子在中心,四個氯原子在四面體的四個頂點。當四面體繞其自身的一軸旋轉一定角度,或記性反演(r—-r)、或旋轉加反演之后,分子的幾何構形不變的操作稱為對稱操作,其旋轉軸成為對稱軸。CC
拉曼光譜與紅外光譜比較
拉曼光譜與紅外光譜比較?拉曼光譜紅外光譜光譜范圍40-4000Cm-1光譜范圍400-4000Cm-1水可作為溶劑水不能作為溶劑樣品可盛于玻璃瓶,毛細管等容器中直接測定不能用玻璃容器測定固體樣品可直接測定需要研磨制成KBR壓片
關于線光譜的暗線光譜的介紹
又叫吸收光譜,吸收光譜是原子吸收白光里相應波長的光后產生的光譜。白光本來是連續的一部分,被吸收了之后就產生了暗線。 產生原因:處于基態原子核外層電子,如果外界所提供的特定能量(E)的光輻射恰好等于核外層電子基態與某一激發態(i)之間的能量差(△Ei)時,核外層電子將吸收特征能量的光輻射由基態躍
熒光光譜屬于分子光譜嗎
根本差別在于激發基態原子的外層電子躍遷的方式,發射光譜屬于熱致激發,即基態原子吸收熱量后,其外層電子躍遷致較高能級,然后躍遷回較低能態發射的特征譜線;分子熒光則是屬于光致激發,基態原子受光輻射后,其外層電子躍遷致較高能級,然后躍遷回較低能態發射的特征譜線。
怎么區分連續光譜和明線光譜
稀薄氣體發光是由不連續的亮線組成,這種發射光譜又叫做明線光譜,原子產生的明線光譜也叫做原子光譜。固體或液體及高壓氣體的發射光譜,是由連續分布的波長的光組成的,這種光譜做連續光譜。例如電燈絲發出的光、熾熱的鋼水發出的光都形成連續光譜.
拉曼光譜的光譜分析
實驗做出的譜圖(見附圖,以波長為單位)標準的譜圖(如下,以波數為單位)通過的結構分析解釋光譜:分子為四面體結構,一個碳原子在中心,四個氯原子在四面體的四個頂點。當四面體繞其自身的一軸旋轉一定角度,或記性反演(r—-r)、或旋轉加反演之后,分子的幾何構形不變的操作稱為對稱操作,其旋轉軸成為對稱軸。CC