抗體多樣性的緣由與衍生基因重組與體細胞高突變
這是一個繽紛多彩的世界,眾生各得其時,恣意生長;又是一個危機四伏的世界,萬物相生相克,終歸塵土。世界因多變而精彩,又因未知而危險。各種各樣的病毒、細菌、真菌和寄生蟲讓人防不勝防,是各類呼吸系統、循環系統、消化系統或皮膚黏膜疾病的元兇之一。導致中世紀歐洲人口驟減的鼠疫陰魂不散,瘧疾、霍亂弧菌、流感病毒仍然施虐人間,而今2019-NCOV的猙獰面孔又展現在我們面前,歷史上每一次疾病大流行都將樂土變煉獄。在歷史長河的慢慢旅途中我們注定會遇到數不盡看不清摸不著的各種“敵人”的侵襲,但幸運的是我們的祖先在進化過程中給我們早已準備好了一款應對各種異源入侵的強有力武器,就是抗體。具科學家推算,保證應對各類抗原的最低多樣性是107,然而抗體的多樣性已經遠遠大于這個數值,那么是什么讓抗體具有如此多的多樣性,下面讓我們一一道來。 抗體多樣性產生原因[1] 抗體屬于后天免疫系統的一部分,最早的脊椎動物魚類就已經進化出抗體以抵御病原......閱讀全文
與腎癌相關的基因突變類型EGFR基因
EGFR編碼的蛋白是一種跨膜糖蛋白,也是表皮生長因子受體家族中的一員,該家族包括HER1(erbB1,EGFR)、HER2(erbB2,NEU)、HER3(erbB3)及HER4(erbB4),也屬于受體酪氨酸激酶家族。EGFR作為細胞表面蛋白可與配體如表皮生長因子(EGF)結合,EGFR可被激活,
與腎癌相關的基因突變類型DROSHA基因
雙鏈(ds)RNA特異性內核糖核酸酶III超家族成員參與真核細胞和原核細胞的多種RNA成熟和衰變途徑(Fortin等人,2002[PubMed 12191433])。RNase III Drosha是核心核酸酶,執行細胞核中microRNA(microRNA)處理的起始步驟(Lee等人,2003[P
基因工程重組抗體技術的研究
在抗體研究的漫長過程中,相繼發展了三代不同水平的抗體制備技術?其中以抗原免疫高等脊椎動物制備的多克隆抗體,稱為第一代抗體;通過雜交瘤技術生產的只針對某一種特定抗原決定簇的單克隆抗體,稱為第二代抗體;應用重組DNA技術或是基因突變的方法改造某種抗體基因的編碼序列,使之產生出自然界中原本存在的抗體蛋白質
重組DNA技術與基因工程(組圖)
重組DNA技術是現代分子生物技術發展中最重要的成就之一。即是基因工程(Gene Engineering)的核心技術。重組DNA技術(Recombinant DNA Technique)是人類根據需要選擇目的基因(DNA片段)在體外與基因運載體重組,轉移至另一細胞或生物體內,以達到改良和創造新的物種和
基因突變、基因重組、染色體變異的區別?
基因突變指堿基對的增添、缺失或替換造成的基因結構的改變。基因突變是分子水平上的改變,單個或多個堿基對的改變,不會引起基因數量的改變。基因突變可以發生在個體發育的任何時期,可以發生在任何細胞時期,但在進行DNA復制的時候發生概率比較高。基因重組是指控制不同性狀的基因的重新組合,發生在有性生殖過程中,具
抗體形成中發揮重要作用的基因發現
加拿大多倫多大學的研究人員發現,一個被忽視的名為FAM72A的基因在抗體的形成過程中起著重要作用,它通過激活誘導脫氨酶(AID)促進了高質量抗體的產生,有助于免疫系統識別和對抗新冠病毒、細菌和其他導致傳染病的病毒。研究結果當地時間24日發表在《自然》雜志上。 免疫學家早在二十年前就已知道,AI
基因重組和基因突變有什么區別?
基因重組是指非等位基因間的重新組合。能產生大量的變異類型,但只產生新的基因型,不產生新的基因。基因重組的細胞學基礎是性原細胞的減數分裂第一次分裂,同源染色體彼此分裂的時候,非同源染色體之間的自由組合和同源染色體的染色單體之間的交叉互換。基因重組是雜交育種的理論基礎。 基因突變是指基因的分子結構的
體細胞的突變研究
體細胞突變發生在體細胞中的突變,即在體細胞發生了基因突變或染色體畸變。體細胞突變率一般為 0.1~1×10-6/代。其突變性狀一般不能傳給下一代個體,除非突變部分可以由無性繁殖方式傳給后代或者突變部分以后能產生生殖細胞。但突變細胞的突變性狀能通過有絲分裂傳給子細胞。例如許多芽變就是體細胞突變,若發現
體細胞突變的概念
體細胞突變是指除性細胞外的體細胞發生的突變。不會造成后代的遺傳改變,卻可以引起當代某些細胞的遺傳結構發生改變。絕大部分體細胞突變無表型效應。在植物中某些體細胞突變可導致葉形和枝形發生一定改變。
體細胞突變的概念
體細胞突變是指除性細胞外的體細胞發生的突變。不會造成后代的遺傳改變,卻可以引起當代某些細胞的遺傳結構發生改變。絕大部分體細胞突變無表型效應。在植物中某些體細胞突變可導致葉形和枝形發生一定改變。
體細胞突變的定義
體細胞突變是發生在正常機體細胞中的突變,比如發生在皮膚或器官中的突變。這樣的突變不會傳給后代。體細胞突變與種系突變不同,后者是發生在將成為配子(gametes)(精子和卵子)的細胞中。生殖細胞的突變可傳遞給后代。
體細胞突變研究
體細胞突變發生在體細胞中的突變,即在體細胞發生了基因突變或染色體畸變。體細胞突變率一般為 0.1~1×10-6/代。其突變性狀一般不能傳給下一代個體,除非突變部分可以由無性繁殖方式傳給后代或者突變部分以后能產生生殖細胞。但突變細胞的突變性狀能通過有絲分裂傳給子細胞。例如許多芽變就是體細胞突變,若發現
細菌的合成與重組
細菌合成2016年3月28日科學家在實驗室中制造了一個人工細菌基因組, 只包括生命所需的最少量基因。這一成果使得為了特定任務——如清除石油——而定制基因組的合成生物體成為可能。這種人工細菌能夠代謝營養物質并自我復制(分裂和增殖)。它只含有473個基因,相比之下,自然界中的細菌往往擁有數千個基因。不過
基因的轉移與重組體的篩選和鑒定1
第一節 轉化基因片段在體外只是一段核酸分子,是化學物質,無法表現出遺傳物質的生命活性。只有當其存在于活細胞后,生命的特征才能充分展示出來。在分子克隆實踐中,在體外操作的核酸分子只有進入細胞以后才能達到克隆的目的。一、重組DNA分子轉入原核生物細胞1. 重組質粒DNA分子轉化大腸桿菌轉化(transf
基因的轉移與重組體的篩選和鑒定2
二、重組DNA分子轉入真核細胞1. 根癌農桿菌Ti質粒介導法農桿菌介導的Ti質粒載體轉化法是目前研究最多、機制最清楚、技術方法最成熟的基因轉化途徑。迄今為止約8096的轉基因植株都是利用農桿菌介導轉化系統獲得的。農桿菌是一類土壤習居菌,革蘭氏染色呈陰性,能感染雙子葉植物和裸子植物,而對絕大多數單子葉
基因的轉移與重組體的篩選和鑒定5
(二)目的克隆的鑒定經過初步篩選獲得的陽性克隆,下一步必須對帶有目的序列的克隆做進一步篩選和鑒定。鑒定一般有幾種常用方法:(1)分子雜交;(2)免疫學檢測;(3)DNA測序;(4)蛋白質活性篩選;(5)基因互補實驗。1. 分子雜交核酸分子雜交有多種方法:原位雜交、點雜交及Southern雜交等。原理
基因的轉移與重組體的篩選和鑒定4
(3)插入表達篩選法與插入失活相反,插入表達法是外源目的基因插入特定載體后,能激活用于篩選操作的標記基因的表達,由此進行轉化子的篩選。設計載體時,在篩選標記基因前面連接一段具有抑制作用的負調控序列,插入外源DNA將使該負調控序列失活,其下游的篩選標記基因才能表達。例如質粒pTR262有一個負調控的c
基因的轉移與重組體的篩選和鑒定3
2. 定向克隆使目的基因按一定的方向插入載體的克隆方案稱為定向克隆。最常用的定向克隆方案使用兩種限制性內切酶切割載體和目的基因,從而在載體和目的基因兩端產生非同源互補的兩個粘性末端。定向克隆也可以通過在一端造成平端,另一端產生同源粘性末端實現年-平連接。定向克隆有效的限制了自身環化,并且實現了目的基
肺癌常見突變基因EGFR與ALK的認知
肺癌是我國發病率最高,也是我國死亡率最高的癌癥,而幸運的是在我國大約有40-50%的肺癌具有敏感基因突變,最常見的是EGFR突變及ALK融合突變(歐美10%),可以應用靶向藥物治療,EGFR/ALK靶點的突變應用靶向藥物有效率高達70%,明顯提高患者生存質量,提高生存期。有效率雖然很高但總有一個跨不
AXL基因突變與藥物因子介紹
酪氨酸蛋白激酶受體UFO是一種人類由AXL基因編碼的酶。 該基因最初被命名為UFO,因為這種蛋白質的功能不明。 然而,自其發現以來的幾年中,對AXL表達譜和機制的研究使其成為一個越來越有吸引力的目標,特別是對于癌癥治療。 近年來,AXL已成為癌癥細胞免疫逃逸和耐藥性的關鍵促進因素,導致侵襲性和轉移性
MTRR基因突變與藥物因子介紹
該基因編碼一個成員的鐵氧還蛋白NADP(+)還原酶(FNR)家族的電子轉移酶。該蛋白通過將蛋氨酸合酶再生到功能狀態在蛋氨酸合成中發揮作用。由于蛋氨酸合成需要葉酸供體的甲基轉移,編碼酶的活性對葉酸代謝和細胞甲基化很重要該基因突變可引起同型膀胱尿巨幼細胞性貧血,cbl E型該基因的選擇性剪接導致多個轉錄
MYCN基因突變與藥物因子介紹
這個基因是myc家族的一員,編碼一個具有基本螺旋-環-螺旋(bhlh)結構域的蛋白質。這種蛋白位于細胞核內,必須與另一種bhlh蛋白二聚以結合DNA。這種基因的擴增與多種腫瘤有關,尤其是神經母細胞瘤。該基因有多種編碼不同亞型的選擇性剪接轉錄變體。This gene is a member of th
ALDOC基因突變與藥物因子介紹
該基因編碼一類果糖二磷酸醛縮酶基因家族成員編碼蛋白在大腦海馬和浦肯野細胞中特異表達,是一種糖酵解酶,催化果糖-1,6-二磷酸和果糖1-磷酸分別可逆地切割為二羥基丙酮磷酸和甘油醛-3-磷酸或甘油醛。[由RefSeq提供,2008年7月]This gene encodes a member of the
INSR基因突變與藥物因子介紹
胰島素受體(IR)是一種由胰島素,IGF-I,IGF-II激活的跨膜受體,屬于大類酪氨酸激酶受體。在細胞學上,胰島素受體在調節葡萄糖穩態中起關鍵作用, 在退化條件下可能導致一系列臨床表現的功能性過程,包括糖尿病和癌癥。生物化學上,胰島素受體由單個基因INSR編碼,轉錄期間的交替剪接導致IR-A或IR
CSK基因突變與藥物因子介紹
該基因編碼的蛋白參與多種途徑,包括src家族激酶的調控。它通過與蛋白酪氨酸磷酸酶(ptpn22)基因編碼的蛋白結合,在t細胞活化中發揮重要作用。該蛋白也在多種底物上磷酸化C末端酪氨酸殘基,包括SRC原癌基因、非受體酪氨酸激酶基因編碼的蛋白質磷酸化抑制src家族酪氨酸激酶的激酶活性。該基因的內含子多態
HRAS基因突變與藥物因子介紹
HRAS編碼的HRAS蛋白為GTP酶,HRas是一種小的G蛋白,屬于小GTP酶超家族,當HRas與鳥苷三磷酸結合后,會結合Raf激酶比如c-Raf,再進一步激活MAPK/ERK通路。這個基因的突變與多種癌癥相關,包括膀胱癌,濾泡狀甲狀腺癌,口腔鱗狀細胞癌。
ALCAM基因突變與藥物因子介紹
該基因編碼激活的白細胞粘附分子(alcam),也稱為CD166(分化簇166),是免疫球蛋白受體的一個亞家族的成員,在細胞外區域有五個免疫球蛋白樣結構域(vvc2c2c2)。該蛋白與T細胞分化抗原CD6結合,參與細胞粘附和遷移過程。發現了編碼不同亞型的多種選擇性剪接轉錄變體。This gene en
AGK基因突變與藥物因子介紹
該基因編碼的蛋白質是一種參與脂質和甘油脂質代謝的線粒體膜蛋白。編碼蛋白是一種脂質激酶,催化磷脂酸和溶血磷脂酸的形成這個基因的缺陷與線粒體DNA缺失綜合征10有關。[ RefSeq,FEB 2012 ]提供The protein encoded by this gene is a mitochondr
ENG基因突變與藥物因子介紹
該基因編碼一種同二聚體跨膜蛋白,是血管內皮的主要糖蛋白。該蛋白是轉化生長因子β受體復合物的一個組成部分,它與beta1和beta3肽具有高親和力。該基因突變導致遺傳性出血性毛細血管擴張癥,也稱為Osler-Rendu-Weber綜合征1,常染色體顯性遺傳性多系統血管發育不良這個基因也可能與子癇前期和
ASNS基因突變與藥物因子介紹
這個基因編碼的蛋白質參與天冬酰胺的合成。這個基因補充了溫度敏感型倉鼠突變體TS11的突變,該突變體在非耐受溫度下阻止細胞周期G1期的進展。另外,還描述了該基因的剪接轉錄變體。The protein encoded by this gene is involved in the synthesis o