未來的流量需求很瘋狂,根據香農定理,毫米波有足夠的帶寬,成為5G無線的必然。 毫米波將應用于未來Small Cells和網絡回傳。有機構預測,到2019年,毫米波將替代20%的LTE回傳,大大節省昂貴的光纖網絡部署。 這幾天,各大廠家關于毫米波的好消息紛至沓來,包括華為在溫哥華完成毫米波外場測試,愛立信與at&t公開演示毫米波可行性,高通發布支持28GHz毫米波的5G基帶等。 什么叫毫米波?嚴格的講,毫米波頻率為30GHz至300GHz,對應波長分別為10mm到1mm。在移動通信領域,通常把24GHz-100GHz稱為5G毫米波。 關于毫米波,一直以來爭論不休,主要的焦點集中在毫米波的天然缺點:信號衰耗大、易受阻擋、覆蓋距離短等。 但,這些問題是可以克服的。 不懂氣象知識的工程師不是好通信工程師 無線信號通過大氣傳播時,由于無線信號的吸收和散射,會產生信號衰減,我們用dB/km來定義信號的衰減程......閱讀全文
毫米波依靠超高的 mmWave 頻率的速度和容量為 5G 應用提供超強動力。 毫米波 5G,也被稱為 mmWave——是下一代移動應用基礎。我們將解釋它是什么,以及在需要高容量、低延遲網絡的地區,它將如何影響 5G 網絡。 下一代 5G 網絡不僅將在
毫米波依靠超高的 mmWave 頻率的速度和容量為 5G 應用提供超強動力。 毫米波 5G,也被稱為 mmWave——是下一代移動應用基礎。我們將解釋它是什么,以及在需要高容量、低延遲網絡的地區,它將如何影響 5G 網絡。 下一代 5G 網絡不僅將在
如今,很多人都在說5G技術的前景,5G技術將是一個革命性的技術,對很多產業將產生變革。可是,對于很多小白而言,5G和4G技術的一個關鍵區別就是毫米波技術,這個可能是5G網絡實現的核心技術。什么是毫米波?有啥用?毫米波是指波長在毫米數量級的電磁波,其頻率大約在30GHz~300GHz之間。根據通信原理
近期最實用、最有效的波束合成方法是混合數模波束成型,它實質上是將數字預編碼和模擬波束合成結合起來,在一個空間(空間復用)中同時產生多個波束。通過將功率引導至具有窄波束的目標用戶,基站可以重用相同的頻譜,同時在給定的時隙中為多個用戶服務。雖然文獻中報道的混合波束成型有幾種
▉ 毫米波的應用場景 我們先來了解一下毫米波的應用場景,看看它到底適合部署在哪些場所。 毫米波的大帶寬、低時延、弱覆蓋特點,決定了它主要適合三類場景: 第一類,是密集人群超大業務流量區域的熱點覆蓋。例如車站、機場等交通樞紐,體育
毫米波是今年如火如荼的話題之一,原因在于毫米波使5G技術成為可能。那么,5G網絡是如何借助毫米波發展自身的呢?心懷這個疑問來看看本文吧。在本文中,將通俗易懂地向大家介紹毫米波的基本知識,并闡述毫米波與5G間的“血肉”關聯。毫米波是什么毫米波究竟是個什么東西?其實我們翻翻高中物理課本就能清楚,
毫米波是今年如火如荼的話題之一,原因在于毫米波使5G技術成為可能。那么,5G網絡是如何借助毫米波發展自身的呢?心懷這個疑問來看看本文吧。在本文中,將通俗易懂地向大家介紹毫米波的基本知識,并闡述毫米波與5G間的“血肉”關聯。毫米波是什么毫米波究竟是個什么東西?其實我們翻翻高中物理課本就能清楚,
根據預測,到今年年底,國內5G基站的數量將可能達到70萬個。 就在5G建設如火如荼的同時,隨著R16版本的凍結,人們逐漸將關注目光放在5G下一階段關鍵技術上。這其中,就包括號稱5G殺手锏的毫米波技術。 我們知道,3GPP定義的5G無線電頻段范圍有2個,分別為FR
配置寬帶測試臺,以覆蓋廣泛的頻率范圍增強型移動寬帶(eMBB,Enhance Mobile Broadband)是ITU-R確定的5G三大主要應用場景之一。5G增強型移動寬帶:具備更大的吞吐量、低延時以及更一致的體驗。5G增強型移動寬帶主要體現在以下領域:3D超高清視頻遠程呈現、可感知的互聯
今日推薦文章作者為東南大學毫米波國家重點實驗室主任、IEEE Fellow 著名毫米波專家洪偉教授,本文選自《毫米波與太赫茲技術》,發表于《中國科學: 信息科學》2016 年第46卷第8 期——《信息科學與技術若干前沿問題評述專刊》,射頻百花潭配圖。引言隨著對電磁波譜的不斷探索, 人類對電子學和光學
毫米波:三種頻率的故事為了服務客戶,全球各地的電信業者已在頻譜上投資了數十億美元。設定頻譜拍賣底價更突顯了頻譜這種寶貴資源的市場價值與供不應求的特性。開啟新的頻譜讓電信業者不僅能服務更多使用者,還能提供更高效能的移動寬帶數據傳輸體驗。與6GHz以下的頻譜相比,毫米波的頻譜不僅非常充裕,而且只要稍經授
1.3 硅基毫米波芯片硅基工藝傳統上以數字電路應用為主。隨著深亞微米和納米工藝的不斷發展,硅基工藝特征尺寸不斷減小,柵長的縮短彌補了電子遷移率的不足,從而使得晶體管的截止頻率和最大振蕩頻率不斷提高,這使得硅工藝在毫米波甚至太赫茲頻段的應用成為可能。國際半導體藍圖協會(International
隨著商用落地的臨近,最近,關于5G的話題也不絕于耳。了解5G的人都知道,5G網絡主要有兩種頻段,一種是sub-6GHz,另一種是毫米波(Millimeter Waves)。實際上,我們現在的LTE網絡都基于sub-6GHz,而毫米波技術才是實現暢想5G時代的關鍵。遺憾的是,在移動通信發展的數
當無線產業開始創建 5G 時,2020 年顯得那么遙遠。而現在就快到 2020 年,這無疑將是屬于 5G 的十年。新聞每天都會報道新的現場試驗和即將進行的商業 5G 部署。對于無線產業來說,這是一個非常令人興奮的時刻。目前,行業 5G 焦點主要在增強移動寬帶方面,利用中頻和高頻頻譜
建構圖2所示的毫米波量測系統時,必須考慮校驗的效益:◇ 系統校驗亦稱為“背對背”校驗,可將發射器連接到接收器,以對齊頻率參考與系統頻率,進而取得準確的振幅、相位及抵達時間估算。◇ 基頻AWG的差動IQ輸出可能具有時序、增益及正交誤差,這會對信號質量造成影響。IQ失配校驗可
據悉,諾基亞和日本電信巨頭NTT DoCoMo日前正在測試使用極高毫米波(mmWave)頻譜的5G技術,用于提供虛擬現實(VR)和增強現實視頻等高帶寬、低延遲服務。此次測試將使用諾基亞貝爾實驗室部門的相控陣射頻芯片和天線平臺,以支持90 GHz頻段的5G傳輸。該頻段明顯高于當前大多數使用m
在智能手機電子設計領域,5G RF前端(RFFE)復雜功能的出現對系統設計提出了一系列新挑戰。在智能手機的有限空間內,對多個5G頻率、TDD和FDD的需求,甚至多個毫米波天線模塊的需求,都促使業界尋求解決方案,以解決這種復雜性問題。 5G設計中應用的主要技術不僅專注在最基
意大利電信近日宣布成立一個毫米波(mmWave)頻段實驗室,用于研究毫米波在5G網絡中的應用。意大利電信是歐洲第一家開設毫米波實驗室的電信運營商。 這個位于都靈的實驗室包括遠場緊湊天線測試系統和球面近場測試系統。意大利電信可使用這一實驗室評估6GHz到100GHz頻段的性能。 “5G能夠支持
解決方案今天,手機的功率放大器主要使用砷化鎵(GaAs)技術。幾年前,OEM從GaAs和藍寶石(SoS)遷移到RF開關的RF SOI。GaAs和SoS是SOI的一個變體,它們變得太貴了。RF SOI不同于完全耗盡型SOI(FD-SOI),適用于數字應用。與FD-SOI類似,RF SOI的襯底
隨著 5G 毫米波預期即將進入商用,行業內關鍵公司的研發正在順利推進,已經完成定制組件指標劃定、設計和驗證。實現未來毫米波 5G 系統所需的基本組件是射頻前端模塊(FEM)。該模塊包括發射機的最終放大級以及接收機中最前端的放大級以及發射 / 接收開關(Tx/Rx)以支持時分雙工(T
5G有許多頗具挑戰性的目標——括增加網絡容量、提升峰值數據速率以及讓行動通訊服務變得更可靠。其中有些目標需要將現今效能提高10倍、100倍或1,000倍,這在現有低于6GHz的頻譜中是無法達成的。因此,研究人員必須在高達100GHz厘米波(cm)及毫米波(mmWave)頻率中研究新的無線接口
毫米波/大規模MIMO/波束成形等,5G關鍵技術給天線設計帶來了怎樣的挑戰? 如果要問一個年輕人生活中最不能缺少什么東西,我想,這個答案十之八九都是手機。手機作為現在年輕人社交、娛樂的工具,如果失去了通信能力,那就是一塊“板磚”,而手機能夠正常通信,離不開信號接收/發射組件-天線。按照業界的定
業界普遍認為,混合波束賦形(例如圖 1 所示)將是工作在微波和毫米波頻率的 5G 系統的首選架構。這種架構綜合運用數字(MIMO) 和模擬波束賦形來克服高路徑損耗并提高頻譜效率。如圖 1 所示,m 個數據流的組合分割到 n 條 RF 路徑上以形成自由空間中的波束,故天線元件總數為乘
最新一代的Wi-Fi(稱為Wi-Fi 6)帶來了一些顯著的性能改進,旨在解決老一代的限制。盡管已經通過802.11ax 認證的芯片提供了大量路由器和客戶端,但Wi-Fi 6才剛剛開始推廣。它將在2020年9月成為IEEE正式規范的一部分。這將迎來一波更新的設備浪潮,吹捧新的無線功能,這
近日,高通公司推出了驍龍865處理器,性能非常強大。然而不足之處在于依然采用外掛基帶而沒有集成5G調制解調器,反倒是中檔位芯片驍龍765采用了集成5G調制解調器設計。這樣的設計方式引起了業內人士熱議,有人表示,高通目前的競爭對手華為、三星的5G處理器都采用了集成基帶芯片的方式。在5G時代,集
4.2、太赫茲天線隨著對太赫茲技術研究的深入,太赫茲天線也逐漸成為研究熱點。太赫茲頻段相比微波毫米波頻段有著更高的工作頻率,對應的波長也短很多。由于天線尺寸與波長的相關性,太赫茲天線具有尺寸小的天然優勢,但也對加工制作帶來了挑戰。類似于低頻段通信的天線需求,太赫茲天線也分全向天線、定向天線以及多波束
毫米波未來的五年時間估計也不會被普及,因為穿透有限需要大規模部署,成本太高。運營商在主流城市地區利潤增長和投入不成正比積極性不大。本文的關注點只聚焦在三年內會商用的5G射頻前端與5G測試。關注一:5G要實現的三大場景下圖是國際電信聯盟委員會,3GPP都達成共識的一張圖,可能EDN電子技術設計
由于微波頻段的擁擠,近年來國內外信息技術界都更加關注毫米波和太赫茲頻域的利用和發展[1-3]。毫米波頻域的應用可追朔到上世紀70年代,美國Milstar通信衛星正式使用Ka波段毫米波技術,使毫米波技術應用取得突破。近年來,高速數據通信和5G移動通信的發展,要求更高的工作頻率和更寬的頻帶寬度。促使我們
在過去幾年中,通信廠商和硬件制造商都在積極布局5G產品,例如針對毫米波、MIMO、載波聚合等一系列軟硬件應用的開發。 當前最新的5G硬件都是在配合相關標準,例如3GPPR16。雖然5G的規范和更新還在進行中,但是可以通過軟件更新的方式來滿足要求。 目
對于投資者來說,軍民融合一直是雙創中一個重要的領域,由高校實驗室走出的項目往往具有高精尖等特點。但是另一方面,這些項目往往都是軍轉民,而且項目長期處于高校之中難以發現。為了提高科技成果轉化,支撐產業發展,成都高新區和電子科技大學在近期開展"一校一帶"科技成果系列對接活動。在3月2