• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 植物熒光成像儀——熒光成像原理

    熒光是自然界常見的一種發光現象。熒光是光子與分子的相互作用產生的,這種相互過程可以通過雅布隆斯基(Jablonslc)分子能級圖描述:大多數分子在常態下,是處于基態的最低振動能級So,當受到能量(光能、電能、化學能等等)激發后,原子核周圍的電子從基態能級So躍遷到能量較高的激發態(第一或第二激發態),激發態的電子處于高能量狀態,不穩定,會通過兩種途徑釋放能量回到基態,一種是以光子形式釋放能量的輻射躍遷(包括熒光和磷光過程),一種是以熱能等形式釋放能量的非輻射躍遷。通常原子核外電子受到激發從基態So躍遷到激發態Si后,會通過非輻射躍遷的方式快速降落在最低振動能級,隨后由最低振動能級回到基態,以光子輻射的形式釋放出能量,具有這種性質的出射光稱為熒光。 熒光成像的理論基礎是熒光物質被激發后所發射的熒光信號的強度在一定的范圍內與熒光素的量成線性關系。熒光成像系統包括熒光信號激發系統(激發光源、光路傳輸組件)、熒光信號收集組件、信號......閱讀全文

    植物熒光成像儀——熒光成像原理

      熒光是自然界常見的一種發光現象。熒光是光子與分子的相互作用產生的,這種相互過程可以通過雅布隆斯基(Jablonslc)分子能級圖描述:大多數分子在常態下,是處于基態的最低振動能級So,當受到能量(光能、電能、化學能等等)激發后,原子核周圍的電子從基態能級So躍遷到能量較高的激發態(第一或第二激發

    植物熒光成像儀——熒光成像簡介

      熒光是自然界常見的一種發光現象。熒光是光子與分子的相互作用產生的,這種相互過程可以通過雅布隆斯基(Jablonslc)分子能級圖描述:大多數分子在常態下,是處于基態的最低振動能級So,當受到能量(光能、電能、化學能等等)激發后,原子核周圍的電子從基態能級So躍遷到能量較高的激發態(第一或第二激發

    植物熒光成像儀概述

      移動式植物熒光成像系統是一種用于農學、水利工程領域的分析儀器,于2015年3月24日啟用。  單幅成像面積最大的葉綠素熒光成像系統不小于35×35cm,可對整株植物甚至多株植物進行實驗成像分析; (2)可在野外自由移動,非損傷原位對植物進行葉綠素熒光成像研究; (3)高靈敏度CCD鏡頭,時間分辨

    植物熒光成像儀——選型

      光源  可選激光光源和發光二極管光源;激光光源為單波長非連續光,分辨率和靈敏度高;二極管光源相對激光光源結構更緊湊簡潔,激發光帶寬較寬,能量輸出相對較低,可以直接整合到圖像掃描設備內,也比較經濟,輕便;  熒光信號收集系統  主要包括振鏡式的掃描系統和擺頭式掃描系統。振鏡式的掃描系統通過快速擺動

    植物多光譜熒光成像系統多激發光、多光譜熒光成像技術

      多激發光、多光譜熒光成像技術:通過光學濾波器技術,僅使特定波長的光(激發光)到達樣品以激發熒光,同時僅使特定波長的激發熒光到達檢測器。不同的熒光發色團(如葉綠素或GFP綠色熒光蛋白等)對不同波長的激發光“敏感”并吸收后激發出不同波長的熒光,根據此原理可以選配2個或2個以上的激發光源、濾波輪及相應

    植物葉綠素熒光成像系統的功能特性

      葉綠素熒光成像和表型分析同步測量  同時具備調制和非調制葉綠素熒光測量功能  出色的高清相機(1.6 M pixel)、高信噪比成像  16位圖像格式,無與倫比的成像質量  光源、相機、濾光片、電腦一體化設計  無可見鏡頭畸變,無需圖像校正  成像范圍18 x 18cm  多種測量protoco

    植物葉綠素熒光成像系統的測量參數

      調制葉綠素熒光參數:Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等;  非調制葉綠素熒光參數:Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Ar

    熒光成像系統

    對完全校準好的熒光成像系統,當用不同的濾色鏡組時,樣品上一個點在檢測器上精確成像為一個點,也就是像素對像素。然而,不同顏色的通道 merge 時,物鏡的色差校正不夠、濾鏡光路沒有完全對準都會使得熒光信號之間的記錄有差錯。對具有復雜圖案的圖像或明暗信號相混的圖像,這個可能就檢測不到。會得出這樣的結論:

    熒光成像系統

    用熒光顯微鏡進行3D球狀體熒光成像時,需要進行儀器設置優化和使用高級功能才能得到更好的成像結果。對球狀體進行Z軸層掃時,需要選擇合適的物鏡并進行合適地聚焦才能拍出更清晰的圖片。EVOS細胞成像系統和配套的CellesteTM成像分析軟件可以完美地對球狀體的大小、結構和蛋白表達水平進行定性和定量分析。

    凝膠成像儀的原理

      凝膠成像儀的凝膠成像系統趨向于多功能化,其分辨率的大小和像素值是分不開的,像素指得是CCD能分別的最小的感光元件,多少萬像素就是這些感光元件的個數了。所以一般來講像素越多,成像也就越清晰細膩,當然這其中還要受許多因素限制。但是高像素也不一定是好的CCD,其原因就是像素大小,也是很重要的因素,相同

    紅外熱成像儀原理

      紅外熱成像儀原理紅外線是一種電磁波,具有與無線電波和可見光一樣的本質。紅外線的發現是人類對自然認識的一次飛躍。利用某種特殊的電子裝置將物體表面的溫度分布轉換成人眼可見的圖像,并以不同顏色顯示物體表面溫度分布的技術稱之為紅外熱成像技術,這種電子裝置稱為紅外熱像儀。    紅外熱成像儀是利用紅外探

    熱成像儀的原理

    紅外熱成像設備探測紅外光譜成像,而普通攝像機利用可見光譜(0.4~0.76μm)和近紅外光譜(0.76~1μm)。紅外熱成像有長波熱像儀和短波熱像儀之分,長波熱像儀工作于8~14μm(這也是目前商用熱像儀使用最多的波段),短波熱像儀工作于3~5μm。使用這兩個波段是因為其屬于“大氣窗口”具有穩定的大

    凝膠成像儀的原理

      凝膠成像主要用于蛋白質、核酸凝膠成像及分析,系統提供白光和紫外光以及藍光光源進行拍攝凝膠,由系統自帶的圖像捕捉軟件捕捉拍攝圖像,然后由系統自帶的圖像分析軟件對拍攝的圖像進行分析。

    凝膠成像儀成像儀特點

    自動對焦(Auto Focus)凝膠成像分析系統,解決了新手在拍攝凝膠照片過成中,經常發生的被拍攝照片的亮度和對比度,焦距不準使照片不清晰的問題。  簡介  自動對焦(Auto Focus)是利用物體光反射的原理,將反射的光被相機上的傳感器CCD接受,通過計算機處理,帶動電動對焦裝置進行對焦的方式叫

    熒光成像是指什么?原理是什么

      熒光是自然界常見的一種發光現象。熒光是光子與分子的相互作用產生的,這種相互過程可以通過雅布隆斯基(Jablonslc)分子能級圖描述:大多數分子在常態下,是處于基態的最低振動能級So,當受到能量(光能、電能、化學能等等)激發后,原子核周圍的電子從基態能級So躍遷到能量較高的激發態(第一或第二激發

    植物多光譜熒光成像系統的廣泛應用

      植物多光譜熒光成像系統可用于葉綠素熒光動態成像分析、多激發光光合效率成像分析、紫外光激發多光譜熒光成像分析、PAR吸收與NDVI(植物光譜反射指數)成像分析、GFP/YFP穩態熒光成像等,全面、非接觸、高靈敏度反映植物生理生態、脅迫生理與抗性、光合效率等。Fluorcam植物多光譜熒光成像系統廣

    植物多光譜熒光成像系統配置規格

      1) 一體式:可進行葉綠素熒光成像分析及UV紫外光源激發4個波段的熒光成像分析,成像面積13 x 13cm,系統高度集成(整體配置于一個一體式暗適用操作箱內)、方便使用,具備7位濾波輪及多光譜熒光成像濾波器組、高分辨率CCD鏡頭、UV紫外光激發多光譜熒光成像功能模塊及程序軟件等;具體又有如下幾種

    植物葉綠素熒光成像系統的主要技術參數

      調制測量光:藍色LED, 450nm,半峰全寬20nm,最大光強4000 umol m-2 s-1 ,獨立觸發  Kautsky測量光:藍色LED, 450nm,半峰全寬20nm,最大光強8000 umol m-2 s-1  飽和脈沖:藍色LED, 450nm,半峰全寬20nm,最大光強4000

    紫外成像儀的工作原理

    UV(紫外成像儀檢測)和IR(紅外熱像儀檢測)技術的比較。UV檢測和紅外成像是一種互補性而非沖突性技術。電力設施一個完整的檢測應該包括紫外成像、紅外成像和可見光檢測。電暈是一種發光的表面局部放電,由于空氣局部高強度電場而產生電離。該過程引起微小的熱量,通常紅外檢測不能發現。紅外檢測通常是在高電阻處產

    熱成像儀的工作原理

      通俗地講熱像儀就是將物體發出的不可見紅外能量轉變為可見的熱圖像。熱圖像的上面的不同顏色代表被測物體的不同溫度。通過查看熱圖像,可以觀察到被測目標的整體溫度分布狀況,研究目標的發熱情況,從而進行下一步工作的判斷。 現代熱像儀的工作原理是使用光電設備來檢測和測量輻射,并在輻射與表面溫度之間建立相互聯

    熱成像儀的工作原理

      通俗地講熱像儀就是將物體發出的不可見紅外能量轉變為可見的熱圖像。熱圖像的上面的不同顏色代表被測物體的不同溫度。通過查看熱圖像,可以觀察到被測目標的整體溫度分布狀況,研究目標的發熱情況,從而進行下一步工作的判斷。 現代熱像儀的工作原理是使用光電設備來檢測和測量輻射,并在輻射與表面溫度之間建立相互聯

    紅外成像儀的使用原理

      幾乎所有利用或者發射能量的物體在發生故障前都會產生發熱現象。保證電氣和機械系統運行可靠性的關鍵便是對能源的有效管理。現在,紅外成像技術已毋庸質疑地成為預防性維護領域最有效的檢測工具,它能夠在設備發生故障之前,快速、準確、安全的發現故障。在一個電氣接點發生故障之前及時發現并進行維修,可以節省或避免

    紅外成像儀的使用原理

      幾乎所有利用或者發射能量的物體在發生故障前都會產生發熱現象。保證電氣和機械系統運行可靠性的關鍵便是對能源的有效管理。現在,紅外成像技術已毋庸質疑地成為預防性維護領域最有效的檢測工具,它能夠在設備發生故障之前,快速、準確、安全的發現故障。在一個電氣接點發生故障之前及時發現并進行維修,可以節省或避免

    FluorCam多光譜熒光成像技術應用案例—多光譜熒光成像...

    FluorCam多光譜熒光成像技術應用案例—多光譜熒光成像是什么1.?多光譜熒光的發現及特性二十世紀八九十年代,植物生理學家對植物活體熒光——主要是葉綠素熒光研究不斷深入。激發葉綠素熒光主要是使用紅光、藍光或綠光等可見光。當科學家使用UV紫外光對植物葉片進行激發,發現植物產生了具備4個特征性波峰的熒

    高光譜成像儀的成像技術原理

      高光譜成像儀是新一代傳感器。在20世紀80年代初正式開始研制。研制這類儀器的主要目的是想在獲取大量地物目標窄波段連續光譜圖像的同時,獲得每個像元幾乎連續的光譜數據,因而稱為成像光譜儀。目前成像光譜儀主要應用于高光譜航空遙感。在航天遙感領域高光譜也開始應用。   高光譜成像技術   高光譜成像

    高光譜成像儀的成像技術原理

      高光譜成像儀是新一代傳感器。在20世紀80年代初正式開始研制。研制這類儀器的主要目的是想在獲取大量地物目標窄波段連續光譜圖像的同時,獲得每個像元幾乎連續的光譜數據,因而稱為成像光譜儀。目前成像光譜儀主要應用于高光譜航空遙感。在航天遙感領域高光譜也開始應用。  高光譜成像技術  高光譜成像技術是基

    熒光成像與高光成像區別

    熒光成像與高光成像區別如下:1、原理:熒光成像是利用熒光標記的分子在激發后發出特定波長的光來成像,而高光成像是基于樣本的反射或透射光強度的差異來成像。2、樣本處理:熒光成像需要在樣本中引入熒光標記物,通常是通過染色或基因工程技術來實現,而高光成像則不需要對樣本進行特殊處理,直接觀察樣本的自然反射或透

    植物表型分析技術快訊—多光譜熒光成像系統研究植物...2

    案例2:?由真菌Rosellinia necatrix引起的白根腐病,是影響鱷梨作物的最主要的土壤傳播疾病之一。白根腐病會引起植物根系腐爛、葉片發黃枯萎,甚至導致植株在出現第一個葉面癥狀幾周后死亡。病害的早期檢測與防治至關重要。本案例中,對感染Rosellinia necatrix后的植

    植物表型分析技術快訊—多光譜熒光成像系統研究植物...1

    植物表型分析技術快訊—多光譜熒光成像系統研究植物脅迫響應FluorCam多光譜熒光成像系統是國際知名FluorCam葉綠素熒光成像技術的高級擴展產品,其高度集成,功能強大,應用廣泛,利用系統中的葉綠素熒光成像、多光譜熒光成像、紅外熱成像技術及RGB成像,可對植物進行全面、非接觸的監測,高靈敏度反映光

    蔬菜病害初期的快速檢測與鑒定

    葉綠素熒光、UV-MCF多光譜熒光、紅外熱成像、以NDVI歸一化植被指數為代表的反射光譜等成像分析技術已經是目前最先進也最重要的無損植物表型檢測技術,尤其適用于植物各種生物與非生物脅迫的檢測、預報與響應機理研究。德國萊布尼茨蔬菜和觀賞植物研究所IGZ的Sandmann研究組對此進行了多年的研究。他們

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载