紫外可見分子吸收光度法原理
紫外—可見分光光度法是利用某些物質分子能夠吸收200 ~ 800 nm光譜區的輻射來進行分析測定的方法。這種分子吸收光譜源于價電子或分子軌道上電子的電子能級間躍遷,廣泛用于無機和有機物質的定量測定,輔助定性分析(如配合IR)。在分子中,除了電子相對于原子核的運動外,還有核間相對位移引起的振動和轉動。這三種運動能量都是量子化的,并對應有一定能級。分子總能量:E分子 = E電子 + E振動 + E轉動當用頻率為n的電磁波照射分子,而該分子的較高能級與較低能級之差△E恰好等于該電磁波的能量 hn時,即有:△ E = hn ( h為普朗克常數)此時,在微觀上出現分子由較低能級躍遷到較高的能級;在宏觀上則透射光的強度變小。用一連續-輻射的電磁波照射分子,將照射前后光強度的變化轉變為電信號,并記錄下來,然后以波長為橫坐標,以電信號(吸光度 A)為縱坐標,就可以得到一張光強度變化對波長的關系曲線圖-紫外吸收光譜圖按Lambert-Beer定律......閱讀全文
紫外可見吸收光譜法的基本原理
紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內部的電子躍遷,電子躍遷類型有:(1)σ→σ* 躍遷 指處于成鍵軌道上的σ電子吸收光子后被激發躍遷到σ*反鍵軌道(2)n→σ* 躍遷 指分子中處于非鍵軌道上的n電子吸收能量后向σ*反鍵軌道的躍遷(3)π→π* 躍遷 指不飽和鍵中的π電子吸收光波能量
紫外可見吸收光譜法的基本原理
紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內部的電子躍遷,電子躍遷類型有:(1)σ→σ* 躍遷 指處于成鍵軌道上的σ電子吸收光子后被激發躍遷到σ*反鍵軌道(2)n→σ* 躍遷 指分子中處于非鍵軌道上的n電子吸收能量后向σ*反鍵軌道的躍遷(3)π→π* 躍遷 指不飽和鍵中的π電子吸收光波能量
紫外可見吸收光譜法的基本原理
紫外可見吸收光譜的基本原理是利用在光的照射下待測樣品內部的電子躍遷,電子躍遷類型有:(1)σ→σ* 躍遷 指處于成鍵軌道上的σ電子吸收光子后被激發躍遷到σ*反鍵軌道(2)n→σ* 躍遷 指分子中處于非鍵軌道上的n電子吸收能量后向σ*反鍵軌道的躍遷(3)π→π* 躍遷 指不飽和鍵中的π電子吸收光波能量
紫外可見吸收光譜吸收峰怎么產生的
紫外可見吸收光譜吸收峰是由于價電子的躍遷而產生的。紫外吸收光譜和可見吸收光譜都屬于分子光譜,它們都是由于價電子的躍遷而產生的。利用物質的分子或離子對紫外和可見光的吸收所產生的紫外可見光譜及吸收程度可以對物質的組成、含量和結構進行分析、測定、推斷。在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電
紫外可見分光光度法和原子吸收分光光度法的關系
相同點: 二者都為吸收光譜,吸收有選擇性,主要測量溶液,定量公式:A=kc,儀器結構具有相似性.不同點:原子吸收光譜法 紫外――可見分光光度法(1) 原子吸收 分子吸收(2) 線性光源 連續光源(3) 吸收線窄,光柵作色散元件 吸收帶寬,光柵或棱鏡作色散元件
原子吸收分光光度法與紫外可見分光光度法的異同
從原理上講 相同點:都是基于A=KC來進行濃度測量,AAS與UV-Vis在一定濃度范圍內其吸光度與濃度成正比來完成濃度測測量。 不同點:雖然都是基于濃度?與光吸收之間關系來測量,但是對于AAS,是基態原子吸收空心陰極燈光源能量,所需能量較高;而UV-Vis是溶液中分子態物質吸收氘燈或鎢燈光源能量
紫外可見漫反射光譜數據怎么轉化為紫外可見吸收光譜
如果你的樣品,沒有透射的話,那么直接用 1-R 去計算吸收就可以了
紫外/可見吸收光譜測量配件
附件齊全 耐腐蝕型光纖探頭可用于在線測量,探頭末端浸入到液體中即可測量,光程可調(0.5-20mm)。不同光程的流通池:5mm、10mm和20mm;微型流通池(光程/容量):1.5 mm / 3 ul,10 mm / 18 ul;帶溫控的微型HPLC流通池,控溫范圍10-40°C ± 0.1
紫外/可見吸收光譜測量特點
主要特點:1.高性價比 廣泛應用于無機化學、生物化學、藥品分析、食品檢驗、環境保護、生命科學等領域。2.低雜散光、高穩定性 革命性優化設計的光學平臺,帶有兩個光闌和多個光陷阱,實現了0.04%的超低雜散光。新型的光學平臺在改善雜散光的同時,機械剛性也大大提高,使得光譜儀受微彎曲和溫度漂移的影響降低了
紫外可見吸收光譜的產生原因
紫外-可見吸收光譜的產生及基本原理2.1物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發態
紫外可見吸收光譜的產生原因
紫外-可見吸收光譜的產生及基本原理2.1物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發態
紫外可見吸收光譜的產生原因
紫外-可見吸收光譜的產生及基本原理2.1 物質對光的選擇性吸收分子的紫外-可見吸收光譜是基于分子內電子躍遷產生的吸收光譜進行分析的一種常用的光譜分析方法。當某種物質受到光的照射時,物質分子就會與光發生碰撞,其結果是光子的能量傳遞到了分子上。這樣,處于穩定狀態的基態分子就會躍遷到不穩定的高能態,即激發
原子吸收分光光度法和紫外可見分光光度法有何異同
原子吸收分光光度計與紫外可見分光光度計的區別1、原理:原子吸收觀察的是構成物質的元素(原子)中的電子在原子軌道中的躍遷,屬于原子吸收。紫外可見光吸收觀察的是構成物質的分子中的電子在分子軌道中的躍遷,屬于分子吸收。2、能量兩者有所同,又有所不同。定量分析的原則同,而測量所需的光能量不同:原子吸收為X射
原子吸收分光光度法和紫外可見分光光度法有何異同?
1、原理: 原子吸收觀察的是構成物質的元素(原子)中的電子在原子軌道中的躍遷,屬于原子吸收。紫外可見光吸收觀察的是構成物質的分子中的電子在分子軌道中的躍遷,屬于分子吸收。? 2、能量 兩者有所同,又有所不同。定量分析的原則同,而測量所需的光能量不同:原子吸收為X射線,能量大,可激發電子
原子吸收分光光度法和紫外可見分光光度法有何異同
一、相同之處:1、它們均是依據樣品對入射光的吸收來進行測量的。即經處理后的樣品,吸收來自光源發射的某一特征譜線,經過分離后,將剩余的特征譜線進行光電轉換,經過記錄器記錄吸收強度的大小來測定物質含量。2、這兩種方法都遵守朗伯比爾定律。3、就組成設備而言,這兩種方法均由光源、單色器、吸收池(或原子化器)
原子吸收分光光度法和紫外可見分光光度法有何異同
一、相同之處:1、它們均是依據樣品對入射光的吸收來進行測量的。即經處理后的樣品,吸收來自光源發射的某一特征譜線,經過分離后,將剩余的特征譜線進行光電轉換,經過記錄器記錄吸收強度的大小來測定物質含量。2、這兩種方法都遵守朗伯比爾定律。3、就組成設備而言,這兩種方法均由光源、單色器、吸收池(或原子化器)
原子吸收分光光度法和紫外可見分光光度法有何異同
一、相同之處:1、它們均是依據樣品對入射光的吸收來進行測量的。即經處理后的樣品,吸收來自光源發射的某一特征譜線,經過分離后,將剩余的特征譜線進行光電轉換,經過記錄器記錄吸收強度的大小來測定物質含量。2、這兩種方法都遵守朗伯比爾定律。3、就組成設備而言,這兩種方法均由光源、單色器、吸收池(或原子化器)
分子的紫外可見吸收光譜呈帶狀光譜,其原因是什么
帶狀光譜是由濾光片帶來的,一般玻璃濾光片半寬度為60nm,夾膠濾光片為30-40nm,最好的干涉濾光片也為10nm。所以呈帶狀光譜。
紅外吸收光譜法和紫外可見分子吸收光譜法的區別
1、吸收的波長不一樣。紅外吸收光譜法中,樣品吸收的是紅外波段的電磁輻射;紫外可見光譜法中,樣品吸收的是紫外-可見波段的電磁輻射。2、儀器原理有區別。紅外光譜法應用的是傅立葉變換紅外光譜,紅外光經過邁克爾遜干涉儀發生干涉后照射樣品,采集到樣品的干涉圖再經過傅立葉變換得到樣品的光譜; 而紫外-可見吸收光
紅外吸收光譜法和紫外可見分子吸收光譜法的區別
1、吸收的波長不一樣。紅外吸收光譜法中,樣品吸收的是紅外波段的電磁輻射;紫外可見光譜法中,樣品吸收的是紫外-可見波段的電磁輻射。2、儀器原理有區別。紅外光譜法應用的是傅立葉變換紅外光譜,紅外光經過邁克爾遜干涉儀發生干涉后照射樣品,采集到樣品的干涉圖再經過傅立葉變換得到樣品的光譜; 而紫外-可見吸收光
紫外可見分光光度法簡介
紫外-可見分光光度法是在190~800nm波長范圍內測定物質的吸光度,用于鑒別、雜質檢查和定量測定的方法。當光穿過被測物質溶液時,物質對光的吸收程度隨光的波長不同而變化。因此,通過測定物質在不同波長處的吸光度,并繪制其吸光度與波長的關系圖即得被測物質的吸收光譜。從吸收光譜中,可以確定最大吸收波長
紫外一可見光分光光度法基本原理
?? 紫外---可見光分光光度法是測量微量半微量物質的最常用方法之一,屬于光學分析法范疇。在現代儀器設計中,紫外光分光光度計和可見光光度計的工作原理、儀器組成等方面十分相似,可以設計在同一臺儀器中,在紫外光和可見光的波長范圍內選取某一特定波長測定。這種儀器被稱為紫外一可見光分光光度計,所以對應為方法
紫外可見吸收光譜藍移有什么好處
Blue shift or hypsochromic shift (藍移) 機化合物向結構發變化使其吸收帶吸收峰波向短波移現象稱「藍移」藍移現象亦源于取代基或溶劑影響 Red shift or bathochromic shift (紅移) 機化合物結構發變化使其吸收帶吸收峰波向波向移現象稱「紅移」
紫外可見吸收光譜法的特點
1、紫外可見吸收光譜所對應的電磁波長較短,能量大,它反映了分子中價電子能級躍遷情況。主要應用于共軛體系(共軛烯烴和不飽和羰基化合物)及芳香族化合物的分析。2、由于電子能級改變的同時,往往伴隨有振動能級的躍遷,所以電子光譜圖比較簡單,但峰形較寬。一般來說,利用紫外吸收光譜進行定性分析信號較少。3、紫外
近紫外可見光吸收譜特征
將藍寶石磨制成光薄片,在西德萊茨MPV-3顯微光度計上可測得350~750nm范圍內透過率值。為了便于與國內外發表的各種藍寶石吸收光譜進行對比,根據公式:吸收率≈1—透過率,可將透過率換算成吸收率。文中所有實測圖譜都是經過校正并換算得出,橫坐標為波長(nm),縱坐標為吸收率。有的作者將橫坐標用頻率(
紫外可見吸收光譜法的應用
利用紫外光譜可以推導有機化合物的分子骨架中是否含有共軛結構體系,如C=C-C=C、C=C-C=O、苯環等。利用紫外光譜鑒定有機化合物遠不如利用紅外光譜有效,因為很多化合物在紫外沒有吸收或者只有微弱的吸收,并且紫外光譜一般比較簡單,特征性不強。利用紫外光譜可以用來檢驗一些具有大的共軛體系或發色官能團的
紫外—可見吸收光譜分析方法
4.3.1.1 定性分析無機元素的定性分析應用紫外—可見分光光度法比較少,主要采用原子發射光譜法或化學分析法。在有機化合物的定性分析鑒定及結構分析方面,由于紫外-可見吸收光譜較為簡單,光譜信息少,特征性不強,并且不少簡單官能團在近紫外光區及可見光區沒有吸收或吸收很弱,在應用時也有較大的局限性。但是,
紫外可見吸收光譜法的特點
1、紫外可見吸收光譜所對應的電磁波長較短,能量大,它反映了分子中價電子能級躍遷情況。主要應用于共軛體系(共軛烯烴和不飽和羰基化合物)及芳香族化合物的分析。2、由于電子能級改變的同時,往往伴隨有振動能級的躍遷,所以電子光譜圖比較簡單,但峰形較寬。一般來說,利用紫外吸收光譜進行定性分析信號較少。3、紫外
紫外—可見吸收光譜分析方法
4.3.1.1 定性分析無機元素的定性分析應用紫外—可見分光光度法比較少,主要采用原子發射光譜法或化學分析法。在有機化合物的定性分析鑒定及結構分析方面,由于紫外-可見吸收光譜較為簡單,光譜信息少,特征性不強,并且不少簡單官能團在近紫外光區及可見光區沒有吸收或吸收很弱,在應用時也有較大的局限性。但是,
紅外吸收光譜與紫外可見吸收光譜的區別
一、兩者的原理不同:1、紫外分光光度計的原理:物質的吸收光譜本質上就是物質中的分子和原子吸收了入射光中的某些特定波長的光能量,相應地發生了分子振動能級躍遷和電子能級躍遷的結果。由于各種物質具有各自不同的分子、原子和不同的分子空間結構,其吸收光能量的情況也就不會相同。因此,每種物質就有其特有的、固定的