物質在超臨界流體中的溶解度,受壓力和溫度的影響很大.可以利用升溫,降壓手段(或兩者兼用)將超臨界流體中所溶解的物質分離析出,達到分離提純的目的(它兼有精餾和萃取兩種作用).例如在高壓條件下,使超臨界流體與物料接觸,物料中的高效成分(即溶質)溶于超臨界流體中(即萃取).分離后降低溶有溶質的超臨界流體的壓力,使溶質析出。如果有效成分(溶質)不止一種,則采取逐級降壓,可使多種溶質分步析出。在分離過程中沒有相變,能耗低。......閱讀全文
物質在超臨界流體中的溶解度,受壓力和溫度的影響很大.可以利用升溫,降壓手段(或兩者兼用)將超臨界流體中所溶解的物質分離析出,達到分離提純的目的(它兼有精餾和萃取兩種作用).例如在高壓條件下,使超臨界流體與物料接觸,物料中的高效成分(即溶質)溶于超臨界流體中(即萃取).分離后降低溶有溶質的超臨界流
如超臨界流體萃取(supercritical fluid extraction,簡稱SFE)、超臨界水氧化技術、超臨界流體干燥、超臨界流體染色、超臨界流體制備超細微粒、超臨界流體色譜(supercritical fluid chromatography)和超臨界流體中的化學反應等,但以超臨界流體
物質在超臨界流體中的溶解度,受壓力和溫度的影響很大.可以利用升溫,降壓手段(或兩者兼用)將超臨界流體中所溶解的物質分離析出,達到分離提純的目的(它兼有精餾和萃取兩種作用).例如在高壓條件下,使超臨界流體與物料接觸,物料中的高效成分(即溶質)溶于超臨界流體中(即萃取).分離后降低溶有溶質的超臨界流
1)超臨界流體 CO2萃取與化學法萃取相比有以下突出的優點: (1)可以在接近室溫(35-40℃)及CO2氣體籠罩下進行提取,有效地防止了熱敏性物質的氧化和逸散。因此,在萃取物中保持著 藥用植物的全部成分,而且能把高沸點,低 揮發度、易 熱解的物質在其沸點溫度以下萃取出來; (2)使用SFE
1.聚苯醚低聚物的分析 色譜柱:10m× 63μm i.d. 毛細管柱, 固定相:鍵合二甲基聚硅氧烷; 流動相:CO2 ;柱溫:120 C; 程序升壓; 2.甘油三酸酯的分析 四種組分僅雙鍵數目和位置不同,難分離; 色譜柱:DB-225 SFC毛細管柱; 流動相: CO2 ;從
如超臨界流體萃取(supercritical fluid extraction,簡稱SFE)、超臨界水氧化技術、超臨界流體干燥、超臨界流體染色、超臨界流體制備超細微粒、超臨界流體色譜(supercritical fluid chromatography)和超臨界流體中的化學反應等,但以超臨界流體
超臨界流體萃取分離過程的原理是超臨界流體對脂肪酸、植物堿、醚類、酮類、甘油酯等具有特殊溶解作用,利用超臨界流體的溶解能力與其密度的關系,即利用壓力和溫度對超臨界流體溶解能力的影響而進行的。在超臨界狀態下,將超臨界流體與待分離的物質接觸,使其有選擇性地把極性大小、沸點高低和分子量大小的成分依次萃取出
物質是以氣、液和固3種形式存在,在不同的壓力和溫度下可以相的轉換。在溫度高于某一數值時,任何大的壓力均不能使該純物質由 氣相轉化為液相,此時的溫度即被稱之為 臨界溫度Tc;而在臨界溫度下,氣體能被 液化的最低壓力稱為 臨界壓力Pc。當物質所處的溫度高于臨界溫度,壓力大于 臨界壓力時,該物質處于
利用超臨界流體進行萃取.將萃取原料裝入萃取釜。采用二氧化碳做為超臨界溶劑。二氧化碳氣體經熱交換器冷凝成液體,用加壓泵把壓力提升到工藝過程所需的壓力(應高于二氧化碳的臨界壓力),同時調節溫度,使其成為超臨界二氧化碳流體。二氧化碳流體作為溶劑從萃取釜底部進入,與被萃取物料充分接觸,選擇性溶解出所需的
超臨界流體萃取技術是七十年代末才興起的一種新型生物分離精制技術.近年來發展迅速,特別是1978年在西德埃森舉行全世界第一次“超臨界氣體萃取”的專題討論會以來,被廣泛應用于化學、石油、食品、醫藥、保健品等領域,受到世界各國的普遍重視,在我國已被列為九五期間國家重點開發的高科技項目。下面就超臨界