細菌生物膜的簡介
生物膜由依靠胞外產物而吸附于固體表面的微生物集落構成,并能結合有機和無機成分;形成包含復雜的理化過程和生物群落的相互作用。 是指正常菌群與上皮細胞表面受體結合而黏附,并分泌胞外多糖聚合物,使細菌以非常精細的方式相互粘連,形成的膜狀物,能發揮屏障和占位性保護作用,使外來病菌不能定植而通過侵入門戶侵襲機體。 通過對微生物在固體表面定植中起支配作用的特殊現象進行了大量研究,逐漸認識到這些微生膜的形成包含復雜的理化過程和生物群落的相互作用。 在海洋環境中,所有類型的表面,如巖石、植物、動物和裝配式結構都可能被生物膜侵占。......閱讀全文
細菌生物膜的簡介
生物膜由依靠胞外產物而吸附于固體表面的微生物集落構成,并能結合有機和無機成分;形成包含復雜的理化過程和生物群落的相互作用。 是指正常菌群與上皮細胞表面受體結合而黏附,并分泌胞外多糖聚合物,使細菌以非常精細的方式相互粘連,形成的膜狀物,能發揮屏障和占位性保護作用,使外來病菌不能定植而通過侵入門戶
細菌生物膜
細菌生物膜會引起尿道炎、前列腺炎、腎結石、中耳炎、齲齒、牙周炎、口臭等多種疾病,它們往往會反復發作,極難徹底治愈。 “只要條件適宜,任何細菌均可形成生物膜,而至今尚無藥物能有效防治此類感染。”近日,由華西口腔醫學院口腔疾病研究國家重點實驗室舉辦的“2011年國際微生物生物膜學術研討會”召開,大
細菌如何形成生物膜?
附著:細菌首先通過表面黏附分子附著到固體表面或生物體內。這些黏附分子可以是蛋白質、多糖或其他分子,它們能夠與固體表面或生物體內的受體結合,使細菌能夠牢固地附著在特定環境中。 初始生物膜形成:一旦細菌附著到固體表面或生物體內,它們就會開始分泌多糖和蛋白質等物質,形成一層薄薄的生物膜。這層生物膜主
生物膜簡介
生物被膜是微生物有組織生長的聚集體。細菌不可逆的附著于惰性或活性實體的表面,繁殖、分化,并分泌一些多糖基質,將菌體群落包裹其中而形成的細菌聚集體膜狀物。單個生物被膜可由一種或多種不同的微生物形成。通過對微生物在固體表面定植中起支配作用的特殊現象進行了大量研究,逐漸認識到這些微生膜的形成包含復雜的理化
生物膜如何影響細菌的附著?
提供物理支撐:生物膜中的多糖和蛋白質可以提供物理支撐,使細菌能夠牢固地附著在固體表面或生物體內。這種物理支撐可以防止細菌被水流沖走或被其他微生物競爭性地取代。 促進細胞間相互作用:生物膜中的細菌可以通過細胞間相互作用來促進附著。例如,一些細菌可以通過分泌黏附分子來與其他細菌或固體表面結合,從而
生物膜的功能簡介
物質運輸 物質的跨膜運輸大體可分為被動運輸、主動運輸和膜動運輸 3大類(見生物膜離子通道)。 被動運輸包括單純擴散及促進擴散,兩者都是在濃度梯度(或更廣義地在電化學位梯度)的驅動下,向平衡態進行的跨膜擴散運動。用脂質分子旋轉異構化所導致的“空腔”的形式和傳播,可部分解釋小分子、脂溶性物質的跨膜
生物膜的分相簡介
在多成分脂質系統中出現兩相或更多相混合共存的狀態。如在一個相當的溫度區間內,固相和流動相同時存在于膜中的不同區域。分相時會影響其中膜蛋白的分布:蛋白質總是排斥于固相之外。除溫度外,還有其他一些分相因子。如膜中有負電荷脂質時,介質中pH、離子種類 (特別是Ca2+)也會引起分相。L'-Lα
生物膜系統的簡介
生物膜系統是指細胞膜、細胞核膜以及細胞器膜等結構共構成的統稱。這些生物膜的組成成分和結構很相似,在結構和功能上緊密聯系,進一步體現了細胞內各種結構之間的協調配合。 細胞的生物膜系統在細胞的生命活動中起著極其重要的作用。此外,研究細胞生物膜系統在醫學和生產過程中都有很廣闊的前景。 細胞就像一臺
細菌生物膜是否“堅不可摧”
細菌生物膜會引起尿道炎、前列腺炎、腎結石、中耳炎、齲齒、牙周炎、口臭等多種疾病,它們往往會反復發作,極難徹底治愈。 “只要條件適宜,任何細菌均可形成生物膜,而至今尚無藥物能有效防治此類感染。”近日,由華西口腔醫學院口腔疾病研究國家重點實驗室舉辦的“2011年國際微生物生物膜學術研討會”召開
細菌生物膜是否“堅不可摧”
細菌生物膜會引起尿道炎、前列腺炎、腎結石、中耳炎、齲齒、牙周炎、口臭等多種疾病,它們往往會反復發作,極難徹底治愈。 “只要條件適宜,任何細菌均可形成生物膜,而至今尚無藥物能有效防治此類感染。”近日,由華西口腔醫學院口腔疾病研究國家重點實驗室舉辦的“2011年國際微生物生物膜學術研討會
生物膜系統的功能簡介
①使細胞內具有一個相對穩定的環境,并使細胞與周圍環境進行物質運輸、能量交換、 信息傳遞。 ②為酶提供了大量的附著位點,為反應提供了場所 ③將細胞分成小區室,把細胞器和細胞質分隔開,使各種化學反應互不干擾,保證了生命活動高效有序地進行
生物膜系統的作用簡介
1-基本作用 首先,細胞膜不僅使細胞具有一個相對穩定的內環境,同時在細胞與外界環境之間進行物質運輸、能量交換和信息傳遞的過程中也起著決定性的作用。第二,細胞的許多重要的化學反應都在生物膜內或者膜表面進行。細胞內的廣闊的膜面積為酶提供了大量的附著位點,為各種化學反應的順利進行創造了有利條件。第三
關于生物膜的功能簡介
細胞、細胞器和其環境接界的所有膜結構的總稱。生物中除某些病毒外,都具有生物膜。真核細胞除質膜(又稱細胞膜)外,還有分隔各種細胞器的內膜系統,包括核膜、線粒體膜、內質網膜、溶酶體膜、高爾基器膜、葉綠體膜、過氧化酶體膜等。生物膜形態上都呈雙分子層的片層結構,厚度約5~10納米。其組成成分主要是脂質和
關于生物膜法的簡介
生物膜法,是與活性污泥法并列的一類廢水好氧生物處理技術,是一種固定膜法,是污水土壤自凈過程的人工化和強化,主要去除廢水中溶解性的和膠體狀的有機污染物。處理技術有生物濾池(普通生物濾池、高負荷生物濾池、塔式生物濾池)、生物轉盤、生物接觸氧化沒備和生物流化床等。
細菌生物膜的技術研究相關介紹
細菌的生理特性受到種群密度及與其他微生物相互作用的極大影響,而附著性是其顯著特征之一。生物膜的生理學研究今年取得重大突破。很大程度是由于應用激光共聚焦掃描顯微鏡(CLSM)和熒光原位雜交(FISH)技術的結果。單種的細菌的生物膜形成過程被認為是一種向多細胞生活方式發展的形式(有研究者將之比作組織
納米微粒可以摧毀頑固細菌生物膜
不少老病號遇到過這種尷尬的局面:慢性炎癥久治不愈,抗生素幾乎失效。澳大利亞新南威爾士大學近日宣布,該校科學家用納米微粒打碎了頑固的細菌生物膜。這一發現將為細菌生物膜引起的慢性炎癥提供治療思路。 應對生物膜細菌的耐藥性,主要有兩條思路:一是研發新的抗生素;二是打碎生物膜,把細菌分割開來。此次,新
納米微粒可以摧毀頑固細菌生物膜
不少老病號遇到過這種尷尬的局面:慢性炎癥久治不愈,抗生素幾乎失效。澳大利亞新南威爾士大學近日宣布,該校科學家用納米微粒打碎了頑固的細菌生物膜。這一發現將為細菌生物膜引起的慢性炎癥提供治療思路。 應對生物膜細菌的耐藥性,主要有兩條思路:一是研發新的抗生素;二是打碎生物膜,把細菌分割開來。此
生物膜法的歷史發展簡介
十九世紀二、三十年代,建造了較多的生物濾池。當時是生物過濾法和活性污泥法并列。這兩種方法相比,由于生物過濾法體積負荷和BOD去除率都較低,環境衛生條件也較差,處理構筑物又有可能堵塞等缺點,于是在四十至六十年代有逐漸被活性污泥法代替的趨勢。但到了六十年代,由于新型合成材料的大量生產和環境保護對水質
細菌的生物膜埋下了自我解體的種子
?據4月30日的《科學》雜志報道說,人們淋浴處墻上的粘液、牙齒上的菌斑以及在醫療儀器或醫院各表面上所形成的薄膜,這些都是細菌性的生物薄膜,這些細菌群落在經過擦洗甚或抗菌處理之后仍會持續存在。新的研究顯示,至少有一種細菌(Bacillus subtilis,或譯:枯草芽孢桿菌)所產生的氨基酸實際上可防
生物膜離子通道簡介
活體細胞不停地進行新陳代謝活動,就必須不斷地與周圍環境進行物質交換,而細胞膜上的離子通道就是這種物質交換的重要途徑。人們已經知道,大多數對生命具有重要意義的物質都是水溶性的,如各種離子,糖類等,它們需要進入細胞,而生命活動中產生的水溶性廢物也要離開細胞,它們出入的通道就是細胞膜上的離子通道。
“簡單”細菌生物膜“畫”出復雜同心圓
一項近日發表于《細胞》的研究發現,細菌生物膜包含了被人們認為是植物和動物所獨有的結構組織。 長期以來,人們認為生物膜——像細菌和真菌等微生物形成的黏糊塊狀物——在生物學上很簡單,只有一種原始的結構組織。這與包括動物在內的許多多細胞生物形成了鮮明的對比——在這些生物中,細胞可以在發育的不同時間和地
移動床生物膜反應器的簡介
簡介MBBR的基本設計思想是能夠連續運行,不發生堵塞,無需反沖洗,水頭損失較小并且具有較大的比表面積。這可以通過生物膜生長在較小的載體單元上,載體在反應器中隨水流自由移動來實現。在好氧反應器中,通過曝氣推動載體移動;在缺氧/厭氧反應器中,通過機械攪拌使載體移動。為防止反應器中填料的流失,可在反應器出
一種小分子能防止細菌形成生物膜
加拿大英屬哥倫比亞大學研究人員發現,一種小分子可防止細菌形成生物膜,而細菌形成生物膜是感染的常見原因。這種抗生物膜肽適用于對抗各種細菌,包括無法用抗生素進行治療的許多細菌。 英屬哥倫比亞大學微生物學和免疫學教授鮑勃·漢考克表示,細菌的抗生素耐藥性問題日漸嚴重,整個抗生素彈藥庫正在逐漸失去其戰
細菌轉化的簡介
細菌轉化是指某一受體細菌通過直接吸收來自另一供體細菌的含有特定基因的脫氧核糖核酸(DNA)片段,從而獲得了供體細菌的相應遺傳性狀,這種現象稱為細菌轉化。細菌轉化是細菌的融合的一種形態,亦即某一菌株(供體菌)的一部分遺傳性狀移到另一菌株(變體菌)的一種遺傳雜交形態。轉化是指外源DNA,即從供體菌抽
共生細菌的簡介
各種生物都是有細菌的,但分有害菌和無害菌,有害菌可以使身體不適,要消滅它。可是無害菌不會給身體帶來不適而且還有益,可以和被寄生的生物共生的細菌稱為共生細菌。 在人的身體內,住著數以萬億計的細菌和其他微生物。它們寄生在人們的皮膚、生殖器、口腔,特別是腸道等部位。實際上,人體細胞并不是人體內數量最
關于細菌感染的簡介
細菌感染是致病菌或條件致病菌侵入血循環中生長繁殖,產生毒素和其他代謝產物所引起的急性全身性感染,臨床上以寒戰、高熱、皮疹、關節痛及肝脾腫大為特征,部分可有感染性休克和遷徙性病灶。病原微生物自傷口或體內感染病灶侵入血液引起的急性全身性感染。臨床上部分患者還可出現煩躁、四肢厥冷及紫紺、脈細速、呼吸增
細菌脂多糖的簡介
細菌脂多糖(英文名:Lipopolysaccharide, LPS)是革蘭氏陰性細菌細胞壁外壁的組成成分,是由脂質和多糖構成的物質(糖脂質)。LPS的結構如概述圖: 上面為O抗原 ,中間為核心多糖,下面為類脂A。LPS的生理作用是通過存在于宿主細胞的細胞膜表面的Toll樣受體(Toll-like
細菌鑒定儀的簡介
自動微生物鑒定儀——Biolog Biolog鑒定系統可鑒定包括細菌、酵母和真菌在內約2000種微生物,便于各領域的微生物實驗室用于對微生物的鑒定;另外,Biolog的智能軟件和獨特的設計理念又使其特別適用于生態研究領域,可用于政府檢驗機構、科研院所等研究單位及工業生產領域進行微生物鑒定、微生
鑒定細菌的程序簡介
鑒定細菌的程序簡介:①細菌形態學檢查;②細菌生長特性;③生物化學試驗;④抗原構造及血清學診斷;⑤噬菌體及藥物敏感試驗;⑥毒力測定及動物試驗。
細菌的大小形態簡介
(一)細菌的大小細菌形體微小,通常以微米(μm;1μm=1/1000mm)為測量單位。須用顯微鏡放大數百至上千倍才能看到。一般球菌的直徑約1μm,中等大小的桿菌長2~3μm,寬0.3~0.5μm.菌齡與環境等因素對菌體大小有影響。(二)細菌的形態與排列方式細菌有三種基本形態,即球形、桿形和螺旋形,分