核磁共振波譜的基本原理
基本原理就是外加磁場和原子自身的磁場二者頻率一致時就會產生共振,放出一個信號。主要獲得化合物的結構信息。......閱讀全文
核磁共振波譜的基本原理
基本原理就是外加磁場和原子自身的磁場二者頻率一致時就會產生共振,放出一個信號。主要獲得化合物的結構信息。
關于核磁共振波譜儀的基本原理
核磁共振波譜儀主要由5個部分組成。 ①磁鐵:它的作用是提供一個穩定的高強度磁場,即H0。 ②掃描發生器:在一對磁極上繞制的一組磁場掃描線圈,用以產生一個附加的可變磁場,疊加在固定磁場上,使有效磁場強度可變,以實現磁場強度掃描。 ③射頻振蕩器:它提供一束固定頻率的電磁輻射,用以照射樣品。
核磁共振波譜法的基本原理
根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:1)中子數和質子數均為偶數的原子核,自旋量子數為0;2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);3)中子數為奇數,質
核磁共振波譜儀核磁共振譜儀基本原理
1)?原子核的基本屬性a.原子核的質量和所帶電荷 ——是原子核的最基本屬性。b.原子核的自旋和自旋角動量 ——量子力學中用自旋量子數I描述原子核的運動狀態。原子核的自旋運動具有一定的自旋角動量;其自旋角動量也是量子化的,它與自旋量子數 I 間的關系為:各種核的自旋量子數質量數A原子序數Z自旋量子數I
核磁共振波譜法基本原理(二)
(三)核磁共振條件由于在磁場中具有核磁矩的1H裂分為兩個不同能級,如果在B0的垂直方向用電磁波照射,提供一定的能量,當電磁波的能量(hv)等于兩個能級的能級差△E,則處于低能級的核可以吸收頻率為v的射頻波躍遷到高能級,從而產生核磁共振吸收信號。相鄰核磁能級的能級差為:電磁波的能量:△E'=h
核磁共振波譜法基本原理(一)
(一)原子核的磁性質原子核是帶正電的粒子,實驗證明大多數原子核在做自旋運動,因而具有一定的自旋角動量,用P表示,角動量是一個矢量,其方向服從右手螺旋定則。核由自旋產生的角動量不是任意數值,而是由自旋量子數決定的。根據量子力學理論,原子核的總角動量P的值為式中,h為普朗克常量;h為角動量的單位,h=h
核磁共振波譜分析法(NMR)基本原理
??? 從IR、UV-VIS光譜可獲取分子內官能團的有關信息,但分子內各官能團如何連接的確切結構常常還必須依靠其它分析手段才能得知,在這方面NMR法是一個非常有力的工具。??? 磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同
核磁共振波譜方法
? 一種現代儀器分析法。在外加磁場B中,自旋量子數為I的核自旋可以有2I+1個不同的取向。例如1H,13C,19F,31P(I均為1/2),則有2個不同的取向。這是由于帶正電荷的核自旋所產生的磁場,可以有與外磁場B相同的取向(具有位能E1),也可能相反(位能E2),在常態下,當E2>E1時,處于E1
核磁共振波譜法的固體核磁波譜
液體核磁樣品如果放在某些特定的物理環境下,是無法進行研究的,而其它原子級別的光譜技術對此也無能為力。但在固體中,像晶體,微晶粉末,膠質這樣的,偶極耦合和化學位移的磁各向異性將在核自旋系統占據主導,在這種情況下如果使用傳統的液態核磁技術,譜圖上的峰將大大增寬,不利于研究。已經有一系列的高分辨率固體核磁
核磁共振波譜的制備須知
1.如果用核磁共振確定樣品的化學結構時, 樣品應該越純越好( 一般應>95%), 包括固體樣品中原有的溶劑也應除掉。2.樣品需要均勻地溶解于整個溶液、無懸浮顆粒( 最好用過濾或離心的方法去除懸浮的固體顆粒),保證溶液中不能含有Fe 、Cu等順磁性粒子,否則會影響勻場和譜圖質量。3.一般的有機物須提供
核磁共振波譜儀的概述
利用不同元素原子核性質的差異分析物質的磁學式 分析儀器。這種儀器廣泛用于化合物的結構測定,定量分析和動物學研究等方面。它與紫外、紅外、質譜和元素分析等技術配合,是研究測定有機和無機化合物的重要工具。原子核除具有電荷和質量外,約有半數以上的元素的原子核還能自旋。由于原子核是帶正電荷的粒子,它自旋就
桌面核磁共振波譜儀
核磁共振波譜儀是利用不同元素原子核性質的差異分析物質的磁學式分析儀器。這種儀器廣泛用于化合物的結構測定,定量分析和動物學研究等方面。它與紫外、紅外、質譜和元素分析等技術配合,是研究測定有機和無機化合物的重要工具。傳統的超導核磁共振波譜儀是依賴于高磁場強度,而高度穩定并且高度均勻的強磁場非常難獲得。需
核磁共振波譜儀簡介
對經光源激發后產生熒光的物質或經化學處理后產生熒光的物質成份分析,可應用于生物化學、生物醫學、環主要用途:1.可進行1H、13C等常規測量,并可檢測31P,15N,29Sz等多換譜2.可進行各類如DEPT、HSQC、馳豫測量3.可進行活性肽,多肽類蛋白的溶液結構研究4.可進行化合物的結構、組分的
色譜核磁共振波譜聯用
核磁共振波譜(NMR)也是有機化合物結構分析的強有力的工具,特別是對同分異構體的分析十分有用,但是實現色譜和核磁共振波譜的在線聯用是當前色譜聯用技術中最困難的,主要原因有以下幾點。首先,核磁共振波譜的靈敏度低,雖然傅里葉變換核磁共振波譜可以通過信號的累加提高靈敏度,但這需要延長采集信號的時間,這與色
色譜核磁共振波譜聯用
核磁共振波譜(NMR)也是有機化合物結構分析的強有力的工具,特別是對同分異構體的分析十分有用,但是實現色譜和核磁共振波譜的在線聯用是當前色譜聯用技術中最困難的,主要原因有以下幾點。首先,核磁共振波譜的靈敏度低,雖然傅里葉變換核磁共振波譜可以通過信號的累加提高靈敏度,但這需要延長采集信
核磁共振波譜儀核磁共振的發生及過程
1.原子核在磁場中的能級分裂質子有自旋,是微觀磁矩,磁矩的方向與旋轉軸重合。在磁場中,這種微觀磁矩的兩種自旋態的取向不同,能量不再相等,磁矩與磁場同向平行的自旋態能級低于磁矩與磁場反向平行的自旋態,兩種自旋態間的能量差△E與磁場強度H0成正比:?式中,h為普朗克常數;H0為磁場的磁場強度,單位為T(
核磁共振波譜儀的特點簡介
儀器主要特點 可靠而友好的NMR譜儀 使用方便的Topspin采集和處理軟件 用于自動化處理,使用方便ICON-NMR"傻瓜"軟件 全數字化特性 用于特殊研究,具有最高靈敏度和穩定性 內置預制脈沖程序用于復雜的NMR實驗
關于核磁共振波譜儀的概述
利用不同元素原子核性質的差異分析物質的磁學式分析儀器。這種儀器廣泛用于化合物的結構測定,定量分析和動物學研究等方面。它與紫外、紅外、質譜和元素分析等技術配合,是研究測定有機和無機化合物的重要工具。原子核除具有電荷和質量外,約有半數以上的元素的原子核還能自旋。由于原子核是帶正電荷的粒子,它自旋就會
核磁共振波譜儀的應用方向
作為測定原子的核磁距和研究核結構的直接而又準確的方法,核磁共振波譜儀是物理學,化學,生物學的研究中的一種重要而強大的實驗手段,也是許多應用科學,如醫學,遺傳學,計量科學,石油分析等學科的重要研究工具。以下是核磁共振波譜儀的一些基本應用:l子結構的測定l化學位移各向異性的研究l金屬離子同位素的應用l動
臺式核磁共振波譜儀的優勢
核磁共振波譜儀是研究原子核對射頻輻射的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。現有的核磁共振波譜儀是極其昂貴的,部分原因是它們需要特殊的冷卻,特殊的環境和訓練有素的專家來運行它們。另一方面,Pulsar臺式核磁共振波譜儀是一個基于永久性磁體,而
核磁共振波譜法的概述
磁性原子核,比如H和C在恒定磁場中,只和特定頻率的射頻場作用。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和900MHz頻率進行直接對應。 化學位移在一個分
核磁共振波譜儀的相關分析
如果有一束頻率為 的電磁輻射照射自旋核,當 = 0時,則自旋核將吸收其輻射能而產生共振,即所謂核磁共振。吸收能量的大小取決于核的多少。這一事實,除為測量 提供途徑外,也為定量分析提供了根據。具體的實現方法是:在固定磁場 0上附加一個可變的磁場。兩者疊加的結果使有效磁場在一定范圍內變化,即 0在一
核磁共振波譜法的原理
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋
核磁共振波譜儀的組成結構
核磁共振波譜儀主要由5個部分組成。①磁鐵:它的作用是提供一個穩定的高強度磁場,即 0。②掃描發生器:在一對磁極上繞制的一組磁場掃描線圈,用以產生一個附加的可變磁場,疊加在固定磁場上,使有效磁場強度可變,以實現磁場強度掃描。③射頻振蕩器:它提供一束固定頻率的電磁輻射,用以照射樣品。④吸收信號檢測器
研究核磁共振波譜儀的方法
?? 研究核磁共振波譜儀的基本方法有兩種:一是連續波或稱穩態方法,是用連續的射頻場作用到核系統上,觀察到核對頻率的的響應信號。另一種是用脈沖法,用射頻脈沖作用到核系統上,觀察到核對時間的響應信號。脈沖法有較高的靈敏度,測量速度快,但需要進行快速傅立葉變換,技術要求比較高,以觀察信號區分,可分觀察色散
核磁共振波譜法的原理
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋
核磁共振波譜儀的發展歷史
1946年,哈佛大學珀賽爾用吸收法首次觀測到石蠟中質子的核磁共振(NMR),幾乎同時美國斯坦福大學布洛赫(F.Block)用感應法發現液態水的核磁共振現象。因此,他們分享了1952年的諾貝爾物理學獎金。核磁共振的方法與技術作為分析物質的手段,由于其可深入物質內部而不破壞樣品,核磁共振波譜儀具有迅速、
核磁共振波譜儀的樣品準備
(1)送檢樣品純度一般應>95% ,無鐵屑、灰塵、濾紙毛等雜質。一般有機物須提供的樣品量: (2)若儀器配置僅能進行液體樣品分析,要求樣品在某種氘代溶劑中有良好的溶解性能,送樣者應先選好所用溶劑。常備的氘代溶劑有氯仿、重水、甲醇、 丙酮、 DMSO 、苯、鄰二氯苯、乙腈、吡啶、醋酸、三氟乙酸。
核磁共振波譜儀核磁共振譜儀定義
核磁共振(nuclear magnetic resonance, NMR)是磁矩不為零的原子核,在外磁場作用自旋能級發生蔡曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。并不是是所有原子核都能產生這種現象,原子核能產生核磁共振現象是因為具有核自旋。原子核自旋產生磁矩,當核磁矩處于靜止外磁場中時產生進
波譜分析之核磁共振
核磁共振 自1945年F.Bloch和E.M.Purcell為首的兩個研究小組同時獨立發現核磁共振現象以來,1H核磁共振在化學中的應用已有50年了。特別是近20年來,隨著超導磁體和脈沖傅里葉變換法的普及,核磁共振的新方法、新技術不斷涌現,如二維核磁共振技術、差譜技術、極化轉移技術及固體核磁共振