差示掃描量熱法的基本原理是當樣品發生相變、玻璃化轉變和化學反應時,會吸收和釋放熱量,補償器就可以測量出如何增加或減少熱流才能保持樣品和參照物溫度一致。以聚合物為例,典型的反應有以下幾種: 沒有相變和其他反應:此時要保持樣品和參比物溫度一致,只需要克服兩者之間的比熱區別即可,此時顯示出DSC的基線。為了保證基線平坦,參比物應該是在實驗溫度范圍內不發生化學變化,且具有基本不變的比熱的物質。 玻璃化轉變:聚合物達到玻璃化轉變溫度時,熱容增大,需要吸收更多熱量來保持溫度一致,因此常表現為DSC基線的轉折。 結晶:有些經過過冷處理形成的非晶態聚合物加熱時會開始結晶,放出結晶熱,DSC測量到必須減少熱流才能保持樣品和參照物溫度一致,在DSC曲線上就出現了一個放熱峰。 熔融:隨著溫度進一步升高,結晶的部分開始熔融,補償器測量出必須增加熱流克服熔融所需的相變焓才能保持溫度一致,于是在DSC曲線上就會出現吸熱峰。 氧化和交聯:有的聚......閱讀全文
差示掃描量熱法的基本原理是當樣品發生相變、玻璃化轉變和化學反應時,會吸收和釋放熱量,補償器就可以測量出如何增加或減少熱流才能保持樣品和參照物溫度一致。以聚合物為例,典型的反應有以下幾種: 沒有相變和其他反應:此時要保持樣品和參比物溫度一致,只需要克服兩者之間的比熱區別即可,此時顯示出DSC的基
示掃描量熱法(differential?scanning?calorimetry)這項技術被廣泛應用于一系列應用,它既是一種例行的質量測試和作為一個研究工具。該設備易于校準,使用熔點低,是一種快速和可靠的熱分析方法。差示掃描量熱法(DSC)是在程序控制溫度下,測量輸給物質和參比物的功率差與溫度關系的
差示掃描量熱儀(DSC)的定義DSC是以下兩種測量方法的總稱。熱通量DSC一種技術,其中由樣品和參考材料形成的樣品單元的溫度按程序變化,并且測量樣品和參考材料之間的溫差隨溫度的變化。功率補償DSC(Power Compensation DSC)一種技術,其中根據溫度測量單位時間施加到樣品和參考材料上
測試開始時上的變化是猶豫初始的“啟動偏移(1).在該瞬態變區域,狀態突然從恒溫模式變為線性升溫模式。啟動偏移后以程序設定的速率升溫。啟動偏移的大小取決于樣品的熱容和升溫速率。在玻璃化轉變區(2),試樣的熱容增加,可觀察到一個吸熱臺階。冷結晶過程(3)形成放熱峰,峰面積等于結晶焓。微晶的熔融形成吸熱
測試開始時上的變化是猶豫初始的“啟動偏移(1).在該瞬態變區域,狀態突然從恒溫模式變為線性升溫模式。啟動偏移后以程序設定的速率升溫。啟動偏移的大小取決于樣品的熱容和升溫速率。在玻璃化轉變區(2),試樣的熱容增加,可觀察到一個吸熱臺階。冷結晶過程(3)形成放熱峰,峰面積等于結晶焓。微晶的熔融形成吸熱峰
測試開始時上的變化是猶豫初始的“啟動偏移(1).在該瞬態變區域,狀態突然從恒溫模式變為線性升溫模式。啟動偏移后以程序設定的速率升溫。啟動偏移的大小取決于樣品的熱容和升溫速率。在玻璃化轉變區(2),試樣的熱容增加,可觀察到一個吸熱臺階。冷結晶過程(3)形成放熱峰,峰面積等于結晶焓。微晶的熔融形成吸熱峰
由于采用了模塊化設計,DSC儀器作為梅特勒-托利多熱分析高端或超越系列的一個組成部分,是人工或自動操作的最佳選擇,廣泛應用于質量保證和生產領域的學術研究和產業化開發。利用市場上最靈敏的DSC測量樣品-DSC是研究各種材料和效果的理想選擇DSC采用創新的、配備120對熱電偶的DSC專利傳感器,確保具有
DSC測量的是與材料內部熱轉變相關的溫度、熱流的關系,應用范圍非常廣,特別是材料的研發、性能檢測與質量控制。材料的特性:如玻璃化轉變溫度。冷結晶、相轉變、熔融、結晶、熱穩定性、固化/交聯、氧化誘導期等,都是DSC的研發領域。原理:差示掃描量熱法(DSC)是在程序控制溫度下,測量輸給物質和參比物的功率
DSC測量的是與材料內部熱轉變相關的溫度、熱流的關系,應用范圍非常廣,特別是材料的研發、性能檢測與質量控制。材料的特性:如玻璃化轉變溫度。冷結晶、相轉變、熔融、結晶、熱穩定性、固化/交聯、氧化誘導期等,都是DSC的研發領域。原理:差示掃描量熱法(DSC)是在程序控制溫度下,測量輸給物質和參比物的功率
DSC的基本原理差示掃描量熱法(DSC)是在程序控制溫度下,測量輸給物質和參比物的功率差與溫度關系的一種技術。DSC和DTA儀器裝置相似,所不同的是在試樣和參比物容器下裝有兩組補償加熱絲,當試樣在加熱過程中由于熱效應與參比物之間出現溫差ΔT時,通過差熱放大電路和差動熱量補償放大器,使流入補償電熱絲的