隨著科學的進步,當今醫學成像技術已經在醫學診斷中起著重要的作用,各種探測方法和顯示手段趨于更精確、更直觀、更完善從而有助于人們觀察生物組織,了解材料結構,它的發展是物理、數學、電子學、計算機科學和生物醫學等多門學科相互結合的結果。 從顯微鏡的發明到 X 射線在醫學上的應用使人們以圖像的形式觀察到了肉眼不能直接看到的形態結構,推動了醫學診斷的發展。目前,各種醫學成像技術不斷發展,用于生物醫學領域的研究,不同的成像原理可以用于觀察不同的器官組織,不但給出組織的形態,還對組織特征進行識別和檢測。 各種成像技術中,光學相干斷層掃描技術/光學相干層析成像[1](OpticalCoherence Tomography)是一項新興的光學成像技術,當從散射介質中返回的彈道光子和蛇行光子與參考光的光程差在光源的相干長度范圍內,發生干涉,而漫射光子與參考光的光程差大于光源的相干長度,不能發生干涉,從而把帶有被測樣品信息的彈道光子和蛇行光子提......閱讀全文
隨著科學的進步,當今醫學成像技術已經在醫學診斷中起著重要的作用,各種探測方法和顯示手段趨于更精確、更直觀、更完善從而有助于人們觀察生物組織,了解材料結構,它的發展是物理、數學、電子學、計算機科學和生物醫學等多門學科相互結合的結果。 從顯微鏡的發明到 X 射線在醫學上的應用使人們以圖像的形式觀察
光學相干斷層掃描技術(光學相干層析技術[2],Optical Coherence Tomography, OCT)是近十年迅速發展起來的一種成像技術,它利用弱相干光干涉儀的基本原理,檢測生物組織不同深度層面對入射弱相干光的背向反射或幾次散射信號,通過掃描,可得到生物組織二維或三維結構圖像。
眼科的應用 OCT是一種新的光學診斷技術,可進行活體眼組織顯微鏡結構的非接觸式、非侵入性斷層成像。OCT是超聲的光學模擬品,但其軸向分辨率取決于光源的相干特性,可達10um ,且穿透深度幾乎不受眼透明屈光介質的限制,可觀察眼前節,又能顯示眼后節的形態結構,在眼內疾病尤其是視網膜疾病的診斷,隨訪
光學相干斷層掃描技術 (Optical CoherenceTomography,簡稱 OCT)是近年來發展較快的一種最具發展前途的新型層析成像技術,特別是生物組織活體檢測和成像方面具有誘人的應用前景,已嘗試在眼科、牙科和皮膚科的臨床診斷中應用,是繼 X-CT 和 MRI 技術之后的又一大技術突破
光學相干斷層掃描技術 (Optical CoherenceTomography,簡稱 OCT)是近年來發展較快的一種最具發展前途的新型層析成像技術,特別是生物組織活體檢測和成像方面具有誘人的應用前景,已嘗試在眼科、牙科和皮膚科的臨床診斷中應用,是繼 X-CT 和 MRI 技術之后的又一大技術突破
OCT是一種新的光學診斷技術,可進行活體眼組織顯微鏡結構的非接觸式、非侵入性斷層成像。OCT是超聲的光學模擬品,但其軸向分辨率取決于光源的相干特性,可達10um ,且穿透深度幾乎不受眼透明屈光介質的限制,可觀察眼前節,又能顯示眼后節的形態結構,在眼內疾病尤其是視網膜疾病的診斷,隨訪觀察及治療效果
OCT專業全稱又叫光學相關斷層掃描。是最近幾年應用于眼科的新型技術。OCT是一種非接觸、高分辨率層析和生物顯微鏡成像設備。它可用于眼后段結構(包括視網膜、視網膜神經纖維層、黃斑和視盤)的活體上查看、軸向斷層以及測量,是特別用作幫助檢測和管理眼疾(包括但不限于黃斑裂孔、黃斑囊樣水腫、糖尿病性視網膜
OCT技術最重要的應用之一是探測人體軟組織的早期癌變。癌癥的早期診斷是挽救病人生命的關鍵,唯一確定的診斷方法是通過活組織檢查,問題是需要花費一定的診斷時間,且給出的結論與分析人員的經驗等主觀因素有很大關系,準確測定癌變區的邊界就更加困難。OCT則依據癌變組織具有與健康組織不同的光譜特性和結構,得
工作原理 OCT專業全稱又叫光學相關斷層掃描。是最近幾年應用于眼科的新型技術。OCT是一種非接觸、高分辨率層析和生物顯微鏡成像設備。它可用于眼后段結構(包括視網膜、視網膜神經纖維層、黃斑和視盤)的活體上查看、軸向斷層以及測量,是特別用作幫助檢測和管理眼疾(包括但不限于黃斑裂孔、黃斑囊樣水腫、糖
清晰的顯示眼后段主要是黃斑和視乳頭的形態特征、視網膜的層間結構、視網膜及其神經纖維層正常厚度變化,另外還可以觀察角膜、虹膜、晶狀體等眼前段組織,并準確測量相關數據。