紅藻氨酸受體
紅藻氨酸受體(KAR)是對神經遞質谷氨酸作出反應的離子型受體。通過激動劑紅藻氨酸鹽的選擇性激活,它們首先被鑒定為一種獨特的受體類型,紅藻氨酸鹽是一種首先從藻類Digeneasimplex中分離出來的藥物。傳統上,它們與AMPA受體一起被歸類為非NMDA型受體。與其他離子型谷氨酸受體AMPA和NMDA受體相比,KAR的了解較少。突觸后紅藻氨酸受體參與興奮性神經傳遞。通過突觸前機制調節抑制性神經遞質GABA的釋放,突觸前紅藻氨酸受體與抑制性神經傳遞有關。......閱讀全文
紅藻氨酸受體
紅藻氨酸受體(KAR)是對神經遞質谷氨酸作出反應的離子型受體。通過激動劑紅藻氨酸鹽的選擇性激活,它們首先被鑒定為一種獨特的受體類型,紅藻氨酸鹽是一種首先從藻類Digeneasimplex中分離出來的藥物。傳統上,它們與AMPA受體一起被歸類為非NMDA型受體。與其他離子型谷氨酸受體AMPA和NMDA
紅藻氨酸受體的概念
紅藻氨酸受體(KAR)是對神經遞質谷氨酸作出反應的離子型受體。通過激動劑紅藻氨酸鹽的選擇性激活,它們首先被鑒定為一種獨特的受體類型,紅藻氨酸鹽是一種首先從藻類Digeneasimplex中分離出來的藥物。傳統上,它們與AMPA受體一起被歸類為非NMDA型受體。與其他離子型谷氨酸受體AMPA和NMDA
紅藻氨酸受體的結構
紅藻氨酸受體亞基有五種,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),與AMPA和NMDA受體亞基相似,可以排列以不同的方式形成四聚體,一種四亞基受體。GluR5-7可以形成同聚體(例如,完全由GluR5組成的受體)和異聚體
紅藻氨酸受體的結構
紅藻氨酸受體亞基有五種,GluR5(GRIK1)、GluR6(GRIK2)、GluR7(GRIK3)、KA1(GRIK4)和KA2(GRIK5),與AMPA和NMDA受體亞基相似,可以排列以不同的方式形成四聚體,一種四亞基受體。GluR5-7可以形成同聚體(例如,完全由GluR5組成的受體)和異聚體
什么是紅藻氨酸
紅藻氨酸是一種天然存在于某些海藻中的酸。海人酸是一種有效的神經興奮性氨基酸激動劑,通過激活谷氨酸受體起作用,谷氨酸是中樞神經系統中主要的興奮性神經遞質。谷氨酸是由細胞的代謝過程產生的,谷氨酸受體有四種主要分類:NMDA受體、AMPA受體、紅藻氨酸受體和代謝型谷氨酸受體。紅藻氨酸是一種紅藻氨酸受體激動
紅藻氨酸的應用
驅蟲劑神經科學研究神經退行性變劑:癲癇建模阿爾茨海默病模型
紅藻氨酸的應用
驅蟲劑神經科學研究神經退行性變劑癲癇建模阿爾茨海默病模型
紅藻氨酸的特點
紅藻氨酸是一種具有強烈的興奮作用和致癇作用的興奮性毒素,是離子型谷氨酸受體的激動劑,其物理性狀是無色針狀結晶,可溶于水,難溶于乙醇。紅藻氨酸通過血腦屏障或顱內局部注射進入腦內,直接與神經元突觸后膜的非NMDA受體(離子型谷氨酸受體中的海人酸受體和AMDA受體)結合,產生興奮性突觸后電位,導致癇性發作
紅藻氨酸的概念
紅藻氨酸又稱“海人酸”,是指一種興奮性神經毒性氨基酸。紅藻氨酸的化學名稱是2-羧甲基-3-異丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量紅藻氨酸注入到腦內,能損毀局部神經元胞體而不傷害神經纖維,它是一種有高度選擇性的破
什么是紅藻氨酸?
紅藻氨酸是一種天然存在于某些海藻中的酸。海人酸是一種有效的神經興奮性氨基酸激動劑,通過激活谷氨酸受體起作用,谷氨酸是中樞神經系統中主要的興奮性神經遞質。谷氨酸是由細胞的代謝過程產生的,谷氨酸受體有四種主要分類:NMDA受體、AMPA受體、紅藻氨酸受體和代謝型谷氨酸受體。紅藻氨酸是一種紅藻氨酸受體激動
紅藻氨酸的基本介紹
紅藻氨酸(亦名海人藻酸)是從海人草中提取的一種興奮神經毒性氨基酸類似物,科研者向大鼠杏仁核內注射紅藻氨酸來研究海馬的損害過程和癲癇的誘發機制。? 紅藻氨酸的化學式是C10H15NO4,分子量是213.23。紅藻氨酸是興奮性谷氨酸類似物,它具有確切的神經興奮和神經毒性。紅藻氨酸通過激活谷氨酸受體
紅藻氨酸有哪些特點?
紅藻氨酸是一種具有強烈的興奮作用和致癇作用的興奮性毒素,是離子型谷氨酸受體的激動劑,其物理性狀是無色針狀結晶,可溶于水,難溶于乙醇。紅藻氨酸通過血腦屏障或顱內局部注射進入腦內,直接與神經元突觸后膜的非NMDA受體(離子型谷氨酸受體中的海人酸受體和AMDA受體)結合,產生興奮性突觸后電位,導致癇性
紅藻氨酸的研究與運用
①目的:探討紅藻氨酸(kainic acid,KA)致癲癇大鼠海馬組織中低氧反應基因血管內皮細胞生長因子(vascular endothelial gowth factor,VEGF)、促紅細胞生成素(erythropoietin,EPO)、低氧誘導因子1α(hypoxia-inducible fa
紅藻氨酸的研究與運用
①目的:探討紅藻氨酸(kainic acid,KA)致癲癇大鼠海馬組織中低氧反應基因血管內皮細胞生長因子(vascular endothelial gowth factor,VEGF)、促紅細胞生成素(erythropoietin,EPO)、低氧誘導因子1α(hypoxia-inducible
紅藻氨酸的基本概念
紅藻氨酸又稱“海人酸”,是指一種興奮性神經毒性氨基酸。紅藻氨酸的化學名稱是2-羧甲基-3-異丙烯基脯氨酸(2-Carboxy-3-carboxymethyl-4-Isopropenylpyrrolidine)。微量紅藻氨酸注入到腦內,能損毀局部神經元胞體而不傷害神經纖維,它是一種有高度選擇性的破壞腦
營養學詞匯紅藻氨酸
紅藻氨酸(亦名海人藻酸)是從海人草中提取的一種興奮神經毒性氨基酸類似物,科研者向大鼠杏仁核內注射紅藻氨酸來研究海馬的損害過程和癲癇的誘發機制。?紅藻氨酸的化學式是C10H15NO4,分子量是213.23。紅藻氨酸是興奮性谷氨酸類似物,它具有確切的神經興奮和神經毒性。紅藻氨酸通過激活谷氨酸受體密集的海
紅藻氨酸的結構和功能
紅藻氨酸(亦名海人藻酸)是從海人草中提取的一種興奮神經毒性氨基酸類似物,科研者向大鼠杏仁核內注射紅藻氨酸來研究海馬的損害過程和癲癇的誘發機制。?紅藻氨酸的化學式是C10H15NO4,分子量是213.23。紅藻氨酸是興奮性谷氨酸類似物,它具有確切的神經興奮和神經毒性。紅藻氨酸通過激活谷氨酸受體密集的海
紅藻氨酸的研究與運用介紹
①目的:探討紅藻氨酸(kainic acid,KA)致癲癇大鼠海馬組織中低氧反應基因血管內皮細胞生長因子(vascular endothelial gowth factor,VEGF)、促紅細胞生成素(erythropoietin,EPO)、低氧誘導因子1α(hypoxia-inducible fa
紅藻氨酸的主要功能特點
紅藻氨酸是一種具有強烈的興奮作用和致癇作用的興奮性毒素,是離子型谷氨酸受體的激動劑,其物理性狀是無色針狀結晶,可溶于水,難溶于乙醇。紅藻氨酸通過血腦屏障或顱內局部注射進入腦內,直接與神經元突觸后膜的非NMDA受體(離子型谷氨酸受體中的海人酸受體和AMDA受體)結合,產生興奮性突觸后電位,導致癇性發作
受體酪氨酸激酶
受體酪氨酸激酶(RTK)是許多多肽生長因子、細胞因子和激素的高親和力細胞表面受體。在人類基因組中鑒定的90個獨特的酪氨酸激酶基因中,有58個編碼受體酪氨酸激酶蛋白。受體酪氨酸激酶已被證明不僅是正常細胞過程的關鍵調節劑,而且在多種癌癥的發展和進展中也具有關鍵作用。受體酪氨酸激酶的突變導致一系列信號級聯
研究提出一種潛在新型抗癲癇策略
近日,西安交通大學前沿院李旭輝和卓敏教授團隊結合VISoR全腦成像、膜片鉗電生理、行為學、藥理學、光/化學遺傳學、腦電記錄和鈣成像等綜合性方法研究了前扣帶回皮層(Anteriorcingulatecortex,ACC)-紋狀體投射環路中紅藻氨酸受體(Kainatereceptor, KAR),受體參
新發現!一種潛在新型抗癲癇策略
近日,西安交通大學前沿院李旭輝和卓敏教授團隊結合VISoR全腦成像、膜片鉗電生理、行為學、藥理學、光/化學遺傳學、腦電記錄和鈣成像等綜合性方法研究了前扣帶回皮層(Anteriorcingulatecortex,ACC)-紋狀體投射環路中紅藻氨酸受體(Kainatereceptor, KAR),受
Nat-Struct-Mol-Biol:鈉在大腦中發揮著獨特的重要作用
加拿大研究人員發現,鹽的主要化學成分——鈉,是大腦中重要神經遞質——紅藻氨酸受體的一個獨特“開關”。紅藻氨酸受體是大腦正常功能的基礎,與癲癇癥和神經性疼痛等多種疾病相關。 麥吉爾大學藥理學和藥物治療學系教授德里克·鮑伊的此項發現,為大腦如何傳輸信息提供了不同的觀點。該項研究的重點在于開發藥
鈉是大腦神經遞質獨特“開關”-將用于開發新藥物
加拿大研究人員發現,鹽的主要化學成分——鈉,是大腦中重要神經遞質——紅藻氨酸受體的一個獨特“開關”。紅藻氨酸受體是大腦正常功能的基礎,與癲癇癥和神經性疼痛等多種疾病相關。 麥吉爾大學藥理學和藥物治療學系教授德里克·鮑伊的此項發現,為大腦如何傳輸信息提供了不同的觀點。該項研究的重點
科學家發現鈉在大腦中充當開關作用
加拿大麥吉爾大學的研究人員最新發現,日常生活中大量存在于食鹽中的化學元素鈉,在大腦中的主要神經遞質受體中起著一種開關作用。這種受體被稱為紅藻氨酸受體,在大腦正常運轉中起著重要的作用,同時還與許多疾病,如癲癇及神經性疼痛有著密不可分的聯系。 麥吉爾大學藥理學與治療方法實驗室負責人、加拿大受體
酪氨酸激酶的受體型
受體酪氨酸激酶(receptor protein tyrosine kinases,RPTKs)的胞外區是結合配體結構域,配體是可溶性或膜結合的多肽或蛋白類激素,包括胰島素和多種生長因子。胞內段是酪氨酸蛋白激酶的催化部位,并具有自磷酸化位點。 配體(如EGF)在胞外與受體結合并引起構象變化,導
什么是受體酪氨酸激酶?
受體酪氨酸激酶(RTK)是許多多肽生長因子、細胞因子和激素的高親和力細胞表面受體。在人類基因組中鑒定的90個獨特的酪氨酸激酶基因中,有58個編碼受體酪氨酸激酶蛋白。受體酪氨酸激酶已被證明不僅是正常細胞過程的關鍵調節劑,而且在多種癌癥的發展和進展中也具有關鍵作用。受體酪氨酸激酶的突變導致一系列信號級聯
非受體酪氨酸蛋白激酶途徑
此途徑的共同特征是受體本身不具有TPK活性,配體主要是激素和細胞因子。其調節機制差別很大。如配體與受體結合使受體二聚化后,可通過G蛋白介導激活PLC-β或與胞漿內磷酸化的TPK結合激活PLC-γ,進而引發細胞信號轉導級聯反應。
非受體酪氨酸蛋白激酶途徑
此途徑的共同特征是受體本身不具有TPK活性,配體主要是激素和細胞因子。其調節機制差別很大。如配體與受體結合使受體二聚化后,可通過G蛋白介導激活PLC-β或與胞漿內磷酸化的TPK結合激活PLC-γ,進而引發細胞信號轉導級聯反應。
酪氨酸激酶偶聯受體的概念
中文名稱酪氨酸激酶偶聯受體英文名稱tyrosine kinase-linked receptor定 義缺少細胞內催化活性的酶聯受體。其配體多為細胞因子,此受體的細胞內區無蛋白激酶活性,而是通過偶聯方式激活Janus蛋白激酶活性,隨之通過信號級聯反應調節相關基因的表達。應用學科細胞生物學(一級學科)