首先,是脂肪酸的組分和結構差異對其被消化吸收的影響。有研究者認為脂質來源及脂肪酸存在的形式的差異可能會影響吸收、分配和生物利用。以磷脂形式存在的DHA比以甘油三酯形式存在的更易被吸收。甘油三酯被胰脂肪酶水解成2-甘油一磷酸和游離脂肪酸,而磷脂被胰磷酸脂酶A2水解生成溶血磷脂和游離脂肪酸,離子化的脂肪酸和2-甘油-磷酸進入膽汁微團后和磷脂形成水溶性混合顆粒,有助于無極性的脂類穿過小腸絨毛表面的水屏障到達微絨毛膜被吸收。 脂肪酸在甘油三酯中的位置決定其是以2-甘油一磷酸酯還是以游離脂肪酸的形式被吸收。當DHA在甘油三酯Sn-2位置上,它們最容易被吸收。一般情況下,磷脂代謝重建酶可選擇性地將不飽和脂肪酸置于甘油酯的Sn-2位置,而將飽和脂肪酸置于Sn-1位置。 其次,是脂肪酸所含的基團或包容物的互相作用對其被消化吸收的影響。攝食的磷脂所含的磷酸鹽基團和氮基(主要是維生素B復合體),可能會在幾個代謝途徑中互相影響;脂肪酸的磷脂源......閱讀全文
首先,是脂肪酸的組分和結構差異對其被消化吸收的影響。有研究者認為脂質來源及脂肪酸存在的形式的差異可能會影響吸收、分配和生物利用。以磷脂形式存在的DHA比以甘油三酯形式存在的更易被吸收。甘油三酯被胰脂肪酶水解成2-甘油一磷酸和游離脂肪酸,而磷脂被胰磷酸脂酶A2水解生成溶血磷脂和游離脂肪酸,離子化的
(1)抗衰老作用 研究表明,隨著增齡,人血小板、紅細胞膜脂質中DHA含量減少,SOD活性降低;12名老年人服用DHA制劑4周后,其紅細胞膜脂質中DHA含量增加,SOD活性增強。也有研究工作提示DHA具有抗氧化、抗衰老作用。 (2)改善血液循環 DHA能抑制血小板聚集,使血栓形成受阻、血液粘
DHA是大腦細胞膜的重要構成成分,參與腦細胞的形成和發育,對神經細胞軸突的延伸和新突起的形成有重要作用,可維持神經細胞的正常生理活動,參與大腦思維和記憶形成過程。可能與促進神經細胞蛋白質合成有關,促進神經細胞的生長。 [1] 母乳中含有長鏈多不飽和脂肪酸,過去認為嬰兒可能通過延伸酶和去不飽和酶
二十二碳六烯酸,即DHA,是人體所必需的一種多不飽和脂肪酸,在魚油中含量較多。分子式為C22H32O2,是一種含有22個碳原子和6個雙鍵的直鏈脂肪酸。動物的甘油磷脂含有不等量的DHA,在體內代謝過程中可由α-亞麻酸生成,但生成量較低,主要通過食物補充。 中文名稱:二十二碳六烯酸 別名:DHA
利用不同脂肪酸的金屬鹽、在某種有機溶劑中的溶解度差異來分離濃縮DHA。將乙醇、魚油及NaOH按一定比例混合,然后加熱使魚油皂化。皂化后的混合液經壓濾分別得到皂液及皂粒。皂液在攪拌下加入H2SO4至pH為1~2。分離上層粗脂肪酸乙醇混合液,加熱回收乙醇,并反復水洗祖脂肪酸至中性,即得DHA含量較高
利用真菌發酵生產DHA的研究主要集中在破囊壺菌和裂殖壺菌,二者均來自海洋,是有色素和具光刺激生長特性的海生真菌。利用真菌發酵生產DHA可以克服從魚油獲取DHA的不足,能夠人為控制影響因素,保持DHA產量和含量的穩定。真菌發酵生產DHA時,一般合成EPA及其他多不飽和脂肪酸較少,這有利于DHA的分
天然不飽和脂肪酸多為順式,需轉變為反式構型,才能被β-氧化酶系作用,進一步氧化分解。在生物體內,不飽和脂肪酸的氧化需要更多酶的參與才能順利進行,由于雙鍵的存在,是DHA比飽和及單不飽和脂肪酸很難氧化分解。 n-3脂肪酸的氧化供能,主要是在過氧化物酶體和線粒體中通過β-氧化進行。DHA在大鼠肝中
利用不同的脂肪酸在過冷有機溶劑中的溶解度差異來分離濃縮DHA。將魚油溶解在1~10倍的無水丙酮中,并冷卻至-25℃以下。混合液的下層即形成含有大量飽和脂肪酸及低度不飽和脂肪酸結晶,而上層含有大量高度不飽和脂肪酸的丙酮溶液。將混合液過濾,濾液在真空下蒸餾除去丙酮即可得到DHA含量較高的魚油制劑。為
DHA在體內的消化吸收與其他脂肪酸相比,差異很大。以甘油三酯形式存在的DHA為例,在小腸中,甘油三酯被肝臟分泌的膽鹽乳化后,在胰脂肪酶和腸脂肪酶的作用下,分解成甘油二酯、甘油一酯、脂肪酸和極少量甘油。這些水解產物與膽固醇、溶血磷脂和膽鹽共同形成一種水溶性的混合微粒,穿過小腸絨毛表面的水屏障到達微
每個星期食用2-3份富含脂肪的魚類或每天服用3-4克標準魚油膠囊能為你的身體提供適量的Ω-3脂肪酸。此外,如果你只需要補充DHA,可以選擇每天服用200毫克從海藻中提取的DHA。當你需要服用補充劑時,請按照藥品標簽上的指南和保存要求來使用。一些藥品需要冷藏。不要使用已經超過保質期的產品。