超分辨熒光顯微成像技術的基本原理
這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米。再結合眼球的構造,大致可以推斷出,在距離眼睛 25 厘米的位置,我們能分辨物體上相距為 80 微米的兩個點,換算成點陣密度就是大約 320 ppi,這也是蘋果所謂“視網膜屏”分辨率的來歷。如果要觀察小于 80 微米的物體,比如細菌,就需要先將物體放大,再用眼睛或者相機觀察。現代光學顯微鏡的構造其實非常簡單,樣品放置在物鏡的焦點處,從樣品上發射或散射的光經過物鏡變成平行(準直)光,再經過一個結像透鏡,然后會聚到相機的感光芯片上成像。按照前面的方法來推算,要區分物體上相距為 200 納米的兩個點,如果使用科研級相機,比如最近火起來的 s......閱讀全文
超分辨熒光顯微成像技術的基本原理
這個問題的答案比較簡單:因為組成視網膜的每一個感光細胞(視桿細胞和視錐細胞)、相機芯片上的每一個感光元件(CCD、CMOS等)都是有大小的。比如視網膜中央凹區域的視錐細胞直徑平均約為 5 微米。而由于奈奎斯特-香農采樣定理的限制,視網膜上能分清的兩個相鄰像點的距離是視錐細胞直徑的兩倍,即 10 微米
前沿顯微成像技術專題——超分辨顯微成像(2)
上一期我們為大家介紹了幾種主要的單分子定位超分辨顯微成像技術,還留下了一些問題,比如它的分辨率是由什么決定的?獲得的大量圖像數據如何進行重構?本期我們就來為大家解答這些問題。單分子定位超分辨顯微成像的分辨率單分子定位超分辨顯微成像的分辨率主要由兩個因素決定:定位精度和分子密度。定位精度是目標分子在橫
前沿顯微成像技術專題——超分辨顯微成像(1)
從16世紀末開始,科學家們就一直使用光學顯微鏡探索復雜的微觀生物世界。然而,傳統的光學顯微由于光學衍射極限的限制,橫向分辨率止步于 200 nm左右,軸向分辨率止步于500 nm,無法對更小的生物分子和結構進行觀察。突破光學衍射極限,一直是科學家們夢想和追求的目標。雖然隨著掃描電鏡、掃描隧道顯微鏡及
超分辨光學顯微成像技術的新進展
從17世紀開始,現代生物學的發展就與顯微成像技術緊密相關。然而,由于受光學衍射極限的影響,傳統光學顯微成像分辨率最小約為入射光波長的一半。因此,科學家們一直在不斷努力,試圖尋找突破光學顯微鏡分辨極限的方法。在超分辨顯微技術飛速發展的同時,現有成像技術的缺陷也日益顯現,例如成像分辨率和成像時間不可兼得
突破:4Pi超分辨顯微成像技術的“禁地”破除
由于具有無損、高特異性等特點,光學熒光顯微鏡一直是生物實驗室進行研究的必備之選。相較于二維成像,三維超分辨顯微成像技術在生物研究中具有顯著的優勢。由于光學衍射效應(Diffraction Effect),經典的單鏡頭顯微鏡系統在軸向(厚度方向)的分辨率表現不佳——即使是新興的超分辨顯微成像技術也
超分辨顯微技術淺析
光學顯微成像的衍射極限 生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾
超分辨顯微技術淺析
光學顯微成像的衍射極限生物醫學成像技術是基礎生物學研究和臨床醫學最重要的工具之一。回顧歷史,已有多位科學家憑借在成像技術方面的突破獲得諾貝爾獎。其中,Roentgen 因發現 X 射線獲得 1901 年諾貝爾物理學獎; Zernike 因發明相襯顯微鏡獲得 1953 年諾貝爾物理學獎; Ruska
暗場顯微結合微球 實現微結構超分辨顯微成像
在光學成像領域中,由于受到衍射極限的限制,常規成像分辨率難以突破200nm。生物醫學、集成電路等領域對提高成像分辨率有迫切要求,如何實現更高成像分辨率成為近年來的熱門研究方向之一。 受自然界微滴可提高成像分辨率的啟發,2011年科學家提出將直徑在微米級的介質微球直接放置于待測樣品表面,在普通白
超分辨率熒光顯微鏡技術成功運用于外泌體的成像和追蹤
外泌體是由細胞分泌的小膜泡,富含大量的蛋白質。考慮到外泌體在不同生理活動中的顯著作用以及在診斷、藥物釋放方面潛在的價值,研究人員在外泌體的體外追蹤和內含物分析方面做了很大的努力。 目前,各種超分辨率顯微鏡的出現為外泌體的研究提供了強大的工具。2016 年 9 月,東南大學先進光子學中心主任崔一
超分辨成像技術看清細胞“劊子手”的行刑過程
近日,中國科學院院士、廈門大學教授韓家淮和廈門大學副教授陳鑫團隊借助單分子定位超分辨成像技術“隨機光學重建顯微鏡(STORM)”,首次揭示了“壞死小體”在細胞中的組織結構特征及其對細胞死亡的決定作用,為人類相關疾病治療干預提供了新思路。相關論文已在《自然·細胞生物學》上發表。超清成像技術讓推論“眼見