脂肪酸合成丙二酰輔酶A
在脂肪酸合成中,它為脂肪酸提供二碳單位,將二碳單位加到延長中的脂肪酸碳鏈中。丙二酰A是在乙酰輔酶A羧化酶的作用下使乙酰輔酶A羧化而形成的。一分子乙酰輔酶A與一分子碳酸氫鹽相結合,其中需要三磷酸腺苷以提供能量。丙二酰輔酶A被一種稱作丙二酰輔酶A:酰基載體蛋白轉酰基酶(MCAT)用于合成脂肪酸。MCAT負責將丙二酰輔酶A上的丙二酸基團轉移到完全酰基載體蛋白(ACP)末尾的硫醇上。......閱讀全文
脂肪酸合成丙二酰輔酶A
在脂肪酸合成中,它為脂肪酸提供二碳單位,將二碳單位加到延長中的脂肪酸碳鏈中。丙二酰A是在乙酰輔酶A羧化酶的作用下使乙酰輔酶A羧化而形成的。一分子乙酰輔酶A與一分子碳酸氫鹽相結合,其中需要三磷酸腺苷以提供能量。丙二酰輔酶A被一種稱作丙二酰輔酶A:酰基載體蛋白轉酰基酶(MCAT)用于合成脂肪酸。MCAT
丙二酰輔酶A對脂肪酸合成的作用
在脂肪酸合成中,它為脂肪酸提供二碳單位,將二碳單位加到延長中的脂肪酸碳鏈中。 丙二酰A是在乙酰輔酶A羧化酶的作用下使乙酰輔酶A羧化而形成的。一分子乙酰輔酶A與一分子碳酸氫鹽相結合,其中需要三磷酸腺苷以提供能量。 丙二酰輔酶A被一種稱作丙二酰輔酶A:酰基載體蛋白轉酰基酶(MCAT)用于合成脂肪
丙二酰輔酶A的基本信息
丙二酰輔酶A是一種有機物,化學式為C24H37LiN7O19P3S,是一種輔酶A的衍生物。中文名丙二酰輔酶A外文名Malonyl-CoA別????名丙二酸單酰輔酶A;丙二酰輔酶A鋰鹽化學式C24H37LiN7O19P3S分子量859.51CAS登錄號108347-84-8
丙二酰輔酶A的化合物作用
該化合物在脂肪酸的生物合成的延伸階段以及聚酮化合物的生物合成中起到重要作用。丙二酰輔酶A同時也被用于使α-酮戊二酸跨過線粒體膜轉運到線粒體基質中。
丙二酰輔酶A的基本信息介紹
丙二酰輔酶A是一種有機物,化學式為C24H37LiN7O19P3S,是一種輔酶A的衍生物。 該化合物在脂肪酸的生物合成的延伸階段以及聚酮化合物的生物合成中起到重要作用。 丙二酰輔酶A同時也被用于使α-酮戊二酸跨過線粒體膜轉運到線粒體基質中。
丙酰輔酶A的基本信息
中文名稱丙酰輔酶A英文名稱propionyl coenzyme A定 義丙酸參與代謝的活化形式,由甲硫氨酸、異亮氨酸降解時產生,再進一步轉變為琥珀酰輔酶A,進入三羧酸循環代謝。應用學科生物化學與分子生物學(一級學科),新陳代謝(二級學科)
關于脂肪酸丙二酰CoA的生成的介紹
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化轉變成丙二酰CoA(或稱丙二酸單酰CoA),乙酰CoA羧化酶存在于胞液中,其輔基為生物素,在反應過程中起到攜帶和轉移羧基的作用。該反應機理類似于其他依賴生物素的羧化反應,如催化丙酮酸羧化成為草酰乙酸的反應等。 由乙
關于脂肪酸合成的簡介
在脂肪酸合成中,它為脂肪酸提供二碳單位,將二碳單位加到延長中的脂肪酸碳鏈中。 丙二酰A是在乙酰輔酶A羧化酶的作用下使乙酰輔酶A羧化而形成的。一分子乙酰輔酶A與一分子碳酸氫鹽相結合,其中需要三磷酸腺苷以提供能量。 丙二酰輔酶A被一種稱作丙二酰輔酶A:酰基載體蛋白轉酰基酶(MCAT)用于合成脂肪
小鼠丙二酰輔酶A(MCoA)ELISA試劑盒使用說明
本試劑僅供研究使用目的:本試劑盒用于測定小鼠血清,血漿及相關液體樣本中小鼠丙二酰輔酶A(M-CoA)含量。實驗原理:本試劑盒應用雙抗體夾心法測定標本中小鼠丙二酰輔酶A(M-CoA)水平。用純化的小鼠丙二酰輔酶A(M-CoA)抗體包被微孔板,制成固相抗體,往包被單抗的微孔中依次加入小鼠丙二酰輔酶A(M
植物脂肪酸的合成
脂肪酸的合成途徑:第一步:由乙酰輔酶A羧化酶催化乙酰輔酶A生成丙二酰單酰輔酶A第二步:脂肪酸合成酶以丙二酰單酰輔酶A為底物,以每次循環增加2個碳的頻率合成酰基碳鏈,這個過程有酰基載體蛋白ACP的參與;第三步:不同碳鏈長度的酰基ACP,在酰基輔酶A合成酶的作用下合成酰基輔酶A,最后利用酰基轉移酶合成三
丙二酰CoA的生成
乙酰CoA由乙酰CoA羧化酶(acetyl CoA carboxylase)催化轉變成丙二酰CoA(或稱丙二酸單酰CoA),乙酰CoA羧化酶存在于胞液中,其輔基為生物素,在反應過程中起到攜帶和轉移羧基的作用。該反應機理類似于其他依賴生物素的羧化反應,如催化丙酮酸羧化成為草酰乙酸的反應等。由乙酰CoA
脂肪酸合成的起始原料
脂肪酸合成的起始原料是乙酰coa,它主要來自糖酵解產物丙酮酸,脂肪酸的合成是在胞液中。先說說飽和脂肪酸的合成:1.乙酰輔酶a的轉運:脂肪酸的合成是在胞液中,而乙酰coa是在線粒體內,它們不能穿過線粒體內膜,需通過轉運機制進入胞液。三羧酸循環中的檸檬酸可穿過線粒體膜進入胞液,然后在檸檬酸裂解酶的作用下
脂肪酸代謝概述(一)
? 一、脂肪酸的氧化分解 脂肪酸在有充足氧供給的情況下,可氧化分解為CO2和H2O,釋放大量能量,因此脂肪酸是機體主要能量來源之一。肝和肌肉是進行脂肪酸氧化最活躍的組織,其最主要的氧化形式是β-氧化。 (一)脂肪酸的β-氧化過程 此過程可分為活化,轉移,β-氧化共三個階段。 1.脂肪酸的活化
簡述維生素B12片的藥理毒理
維生素B12在體內轉化為甲基鈷銨和輔酶B12產生活性,甲基鉆銨參與葉酸代謝,缺乏時妨礙四氫葉酸的循環利用,從而阻礙胸腺嘧啶脫氧核苷酸的合成,使DNA合成受阻,血細胞的成熟分裂停滯,導致巨幼細胞貧血;輔酶B12促進脂肪代謝的中間產物甲基丙二酰輔酶A轉變成琥珀酰輔酶A參與三羧酸循環,人體缺乏時引起甲
丙二酰脲類鑒別實驗
(1) 取供試品約0.1g,加碳酸鈉試液1ml與水10ml,振搖2分鐘,濾過,濾液中逐滴加入硝酸銀試液,即生成白色沉淀,振搖,沉淀即溶解;繼續滴加過量的硝酸銀試液,沉淀不再溶解。(2) 取供試品約50mg,加吡啶溶液(1→10)5ml,溶解后,加銅吡啶試液1ml,即顯紫色或生成紫色沉淀。
亞麻酸合成的起始丙二酰ACP(-malonyl-ACP)的形成
植物亞麻酸合成的最初底物是乙酰CoA,但由于乙酰CoA是生物體合成與分解代謝的主要節點之一,其作為脂肪酸合成原初底物,其來源是多樣的,既可以是線粒體有氧呼吸的最終產物,也可以是質體磷酸丙糖脫羧的結果。應該指出,以往認為植物合成包括亞麻酸在內的脂肪酸均起始于細胞質內的乙酰CoA庫(Actyl CoA
亞麻酸合成的起始丙二酰ACP(-malonyl-ACP)的形成
植物亞麻酸合成的最初底物是乙酰CoA,但由于乙酰CoA是生物體合成與分解代謝的主要節點之一,其作為脂肪酸合成原初底物,其來源是多樣的,既可以是線粒體有氧呼吸的最終產物,也可以是質體磷酸丙糖脫羧的結果。應該指出,以往認為植物合成包括亞麻酸在內的脂肪酸均起始于細胞質內的乙酰CoA庫(Actyl CoA
脂肪酸的合成是在什么中進行的
脂肪酸合成的起始原料是乙酰CoA,它主要來自糖酵解產物丙酮酸,脂肪酸的合成是在胞液中。先說說飽和脂肪酸的合成:1.乙酰輔酶A的轉運:脂肪酸的合成是在胞液中,而乙酰CoA是在線粒體內,它們不能穿過線粒體內膜,需通過轉運機制進入胞液。三羧酸循環中的檸檬酸可穿過線粒體膜進入胞液,然后在檸檬酸裂解酶的作用下
鈷胺素的藥效學信息
①維生素B12為一種含鈷的紅色化合物,需轉化為甲基鈷胺和輔酶B12后才具有活性。葉酸在體內必須經還原作用轉變為二氫葉酸,然后在二氫葉酸還原酶作用下,成為四氫葉酸。甲基鈷胺能使四氫葉酸轉化為N5,N10-甲烯基四氫葉酸,后者在尿嘧啶脫氧核苷酸轉化過程中具有供給“一碳基團”的作用。N5,N10-甲烯基四
關于維生素B12的藥效學的介紹
①維生素B12為一種含鈷的紅色化合物,需轉化為甲基鈷胺和輔酶B12后才具有活性。葉酸在體內必須經還原作用轉變為二氫葉酸,然后在二氫葉酸還原酶作用下,成為四氫葉酸。甲基鈷胺能使四氫葉酸轉化為N5,N10-甲烯基四氫葉酸,后者在尿嘧啶脫氧核苷酸轉化過程中具有供給“一碳基團”的作用。N5,N10-甲烯
甲基鈷胺素的藥效學的介紹
①維生素B12為一種含鈷的紅色化合物,需轉化為甲基鈷胺和輔酶B12后才具有活性。葉酸在體內必須經還原作用轉變為二氫葉酸,然后在二氫葉酸還原酶作用下,成為四氫葉酸。甲基鈷胺能使四氫葉酸轉化為N5,N10-甲烯基四氫葉酸,后者在尿嘧啶脫氧核苷酸轉化過程中具有供給“一碳基團”的作用。N5,N10-甲烯
關于維生素B12的藥效學的介紹
①維生素B12為一種含鈷的紅色化合物,需轉化為甲基鈷胺和輔酶B12后才具有活性。葉酸在體內必須經還原作用轉變為二氫葉酸,然后在二氫葉酸還原酶作用下,成為四氫葉酸。甲基鈷胺能使四氫葉酸轉化為N5,N10-甲烯基四氫葉酸,后者在尿嘧啶脫氧核苷酸轉化過程中具有供給“一碳基團”的作用。N5,N10-甲烯
脂肪酸的生物合成
脂肪酸的生物合成biosynthesis of fattyacids 高級脂肪酸的合成,以乙酰CoA為基礎,通過乙酰輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單酰CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單酰CoA與乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的
脂肪酸的生物合成
脂肪酸的生物合成biosynthesis of fattyacids 高級脂肪酸的合成,以乙酰CoA為基礎,通過乙酰輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單酰CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單酰CoA與乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的
脂肪酸的合成過程
脂肪酸的生物合成biosynthesisoffattyacids高級脂肪酸的合成,以乙酰CoA為基礎,通過乙酰輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單酰CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單酰CoA與乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的軟脂
脂肪酸的生物合成
脂肪酸的生物合成biosynthesis of fattyacids 高級脂肪酸的合成,以乙酰CoA為基礎,通過乙酰輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單酰CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單酰CoA與乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的
脂肪酸氧化的β氧化前提的介紹
1>脂肪酸的活化 和葡萄糖一樣,脂肪酸參加代謝前也先要活化。其活化形式是硫酯——脂肪酰CoA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。 活化后生成的脂酰CoA極性增強,易溶于水;分子中有高能鍵、性質活潑;是酶的特異底物,與酶的親和力大,因此更容易參加反
簡述脂肪酸合酶的代謝功能
脂肪酸是脂肪族類酸,在能量運輸和儲存、細胞結構、提供激素合成的中間物等多個方面發揮著關鍵作用。脂肪酸的合成需要將乙酰輔酶A和丙二酸單酰輔酶A通過一系列的克萊森縮合反應然后脫羧(生物素作輔酶)來完成。在脂肪鏈的延伸過程中,通過連續的酮還原酶、脫水酶以及烯脂酰ACP還原酶的作用,加入的酮基(酰基)被
簡述脂肪酸合成酶系的作用
脂肪酸是脂肪族類酸,在能量運輸和儲存、細胞結構、提供激素合成的中間物等多個方面發揮著關鍵作用。脂肪酸的合成需要將乙酰輔酶A和丙二酸單酰輔酶A通過一系列的克萊森縮合反應然后脫羧(生物素作輔酶)來完成。在脂肪鏈的延伸過程中,通過連續的酮還原酶、脫水酶以及烯脂酰ACP還原酶的作用,加入的酮基(酰基)被
脂肪酸是如何進行生物合成的
脂肪酸的生物合成高級脂肪酸的合成,以乙酰CoA為基礎,通過乙酰輔酶A羧化酶的作用,在ATP的分解的同時與CO2結合,產生丙二酸單酰CoA,開始這一階段是控速步驟,為檸檬酸所促進。丙二酸單酰CoA與乙酰CoA一起,在脂肪酸合成酶的催化下合成C16的軟脂酸(或C18的硬脂酸)醫學|教育|網搜集整理,但這