影響因素:1)振動基團的拉曼活性。有的基團的振動只有紅外活性或拉曼活性很弱,這時基團含量再高,在拉曼光譜也只會表現出弱峰。2)振動基團的含量。3)所用激發光的波長和功率。4)樣品的照射點,對不均勻的樣品,不同的照射點相對強度和絕對強度都可能不同。光照射到物質上發生彈性散射和非彈性散射,彈性散射的散射光是與激發光波長相同的成分,非彈性散射的散射光有比激發光波長長的和短的成分,。拉曼效應是光子與光學支聲子相互作用的結果。......閱讀全文
拉曼(Raman)光譜作為現代物質分子結構研究的重要方法之一,被廣泛應用于物質微結構的研究,其主要是通過拉曼位移(拉曼振動頻率) Δv來確定物質的結構.它提供的結構信息是關于分子內部各種簡正振動頻率及有關振動能級的情況,從而可以用來鑒定分子中存在的官能團,進而進行分子結構的識別.拉曼位移就是分子振動
拉曼(Raman)光譜作為現代物質分子結構研究的重要方法之一,被廣泛應用于物質微結構的研究,其主要是通過拉曼位移(拉曼振動頻率) Δv來確定物質的結構.它提供的結構信息是關于分子內部各種簡正振動頻率及有關振動能級的情況,從而可以用來鑒定分子中存在的官能團,進而進行分子結構的識別.拉曼位移就是分子振動
影響因素:1)振動基團的拉曼活性。有的基團的振動只有紅外活性或拉曼活性很弱,這時基團含量再高,在拉曼光譜也只會表現出弱峰。2)振動基團的含量。3)所用激發光的波長和功率。4)樣品的照射點,對不均勻的樣品,不同的照射點相對強度和絕對強度都可能不同。光照射到物質上發生彈性散射和非彈性散射,彈性散射的散射
影響因素:1)振動基團的拉曼活性。有的基團的振動只有紅外活性或拉曼活性很弱,這時基團含量再高,在拉曼光譜也只會表現出弱峰。2)振動基團的含量。3)所用激發光的波長和功率。4)樣品的照射點,對不均勻的樣品,不同的照射點相對強度和絕對強度都可能不同。光照射到物質上發生彈性散射和非彈性散射,彈性散射的散射
影響因素:1)振動基團的拉曼活性。有的基團的振動只有紅外活性或拉曼活性很弱,這時基團含量再高,在拉曼光譜也只會表現出弱峰。2)振動基團的含量。3)所用激發光的波長和功率。4)樣品的照射點,對不均勻的樣品,不同的照射點相對強度和絕對強度都可能不同。光照射到物質上發生彈性散射和非彈性散射,彈性散射的散射
影響因素:1)振動基團的拉曼活性。有的基團的振動只有紅外活性或拉曼活性很弱,這時基團含量再高,在拉曼光譜也只會表現出弱峰。2)振動基團的含量。3)所用激發光的波長和功率。4)樣品的照射點,對不均勻的樣品,不同的照射點相對強度和絕對強度都可能不同。光照射到物質上發生彈性散射和非彈性散射,彈性散射的散射
熒光干擾問題和靈敏度較低嚴重阻礙了常規拉曼光譜的廣泛應用。但近年來發展起來的紫外拉曼光譜技術有效地解決了上述問題。紫外拉曼光譜技術的出現和發展大大地擴展了拉曼光譜的應用范圍。右圖是紫外拉曼光譜避開熒光干擾的原理圖。熒光往往出現在300nm-700nm區域,或者更長波長區域。而在紫外區
熒光干擾問題和靈敏度較低嚴重阻礙了常規拉曼光譜的廣泛應用。但近年來發展起來的紫外拉曼光譜技術有效地解決了上述問題。紫外拉曼光譜技術的出現和發展大大地擴展了拉曼光譜的應用范圍。右圖是紫外拉曼光譜避開熒光干擾的原理圖。熒光往往出現在300nm-700nm區域,或者更長波長區域。而在紫外區的某個波
熒光干擾問題和靈敏度較低嚴重阻礙了常規拉曼光譜的廣泛應用。但近年來發展起來的紫外拉曼光譜技術有效地解決了上述問題。紫外拉曼光譜技術的出現和發展大大地擴展了拉曼光譜的應用范圍。右圖是紫外拉曼光譜避開熒光干擾的原理圖。熒光往往出現在300nm-700nm區域,或者更長波長區域。而在紫外區的某個波 紫外
當一束激發光的光子與作為散射中心的分子發生相互作用時,大部分光子僅是改變了方向,發生散射,而光的頻率仍與激發光源一致,這中散射稱為瑞利散射。但也存在很微量的光子不僅改變了光的傳播方向,而且也改變了光波的頻率,這種散射稱為拉曼散射。其散射光的強度約占總散射光強度的10-6~10-10。拉曼散射的產生原