液體閃爍計數閃爍液的相關介紹
在液體閃爍計數系統中,閃爍體又稱熒光體,是閃爍液的溶質,它的很多,根據其熒光特性及作用,可分為兩類,即第一閃爍和第二閃爍體。 ①第一閃爍體(初級閃爍體): 常用的第一閃爍體: Ⅰ對聯三苯(TP):化學結構 它是最早使用的閃爍體之一。它的計數率高,價格比較便宜,但是,在低溫或含水溶液介度不高。 Ⅱ2,5-二苯惡唑(PPO):化學結構 它是目前普遍使用的閃爍體,能很好地溶介在常用的溶劑中,在含水的情況下也是如此,在甲苯中的溶介度達200克/升以上。它的化學性質穩定,價格也較便宜。但是,它的最大缺點是有明顯的濃度淬滅(自身淬滅),即隨著PPO在溶劑中的濃度升高,計數效率下降。 Ⅲ2-苯基-5-(4-二苯基)-1,3,4惡唑(PBD):化學結構為 它是已知的最有效的閃爍體之一。比PPO能耐受濃度淬滅,但是,它的溶介度低,尤其是在低溫和含水樣品存在時,溶介度下降更快,而且用量比PPO多兩倍,價格昂貴。 Ⅳ2-(4-t-丁基......閱讀全文
液體閃爍計數閃爍液的相關介紹
在液體閃爍計數系統中,閃爍體又稱熒光體,是閃爍液的溶質,它的很多,根據其熒光特性及作用,可分為兩類,即第一閃爍和第二閃爍體。 ①第一閃爍體(初級閃爍體): 常用的第一閃爍體: Ⅰ對聯三苯(TP):化學結構 它是最早使用的閃爍體之一。它的計數率高,價格比較便宜,但是,在低溫或含水溶液介度不高
液體閃爍計數的溶劑的相關介紹
從β源放射β射線到發射能被肖陰極接收的光婦的這一系列能量轉移環節中,能量轉移效率是很低的,只有少部分放射能量被利用來發射光子,其中放射源與溶劑之間,能量轉移效率大約為5~10%。對溶劑的選擇,主要視其對閃爍體的溶介度和將放射能轉移給閃爍體的效率而定。如果以一定濃度的閃爍體在甲苯溶液中產生的脈沖高
液體閃爍計數器的相關介紹
液體閃爍計數所用的閃爍體是液態,即將閃爍體溶解在適當的溶液中,配制成為閃爍液,并將待測放射性物質放在閃爍液中進行測量。應用液體閃爍計數可達到4π立體角的優越幾何測量條件,而且源的自吸收也可以忽略,對于能量低,射程短、易被空氣和其它物質吸收的α射線和低能β射線(如³H和C-14),有較高的
液體閃爍計數儀的功能介紹
液體閃爍計數儀,是使用液體閃爍體(閃爍液)接受射線并轉換成熒光光子的放射性計量儀。
液體閃爍計數的探測裝置介紹
在液體閃爍計數中引用非常靈敏的光電倍增管,對于探測穿透力低的α射線和低能量的β射線(如³H,C-14等)是極為重要的。使用一個光電倍增管的單光電倍增管液體閃爍計數器,由于電倍增管的熱噪聲及樣品受光照射后發出的磷光,會有較高的本底計數,探測效率也較低。使用兩個性能指標大致相同的光電倍增管,
液體閃爍計數器應用介紹
液體閃爍計數器主要用于探測一些低能β核素示蹤原子的放射性樣品,目前已廣泛的應用于工業、農業、生物醫學、分子生物學、環境科學、考古與地質構造等領域科研工作中的核素示蹤與核輻射測量。主要包括以下幾個方面:1、細胞與分子生物學主要利用3H、14C、32P等放射性核素進行體內或體外標記,研究細胞生物體內核酸
液體閃爍計數器的應用介紹
液體閃爍計數器主要用于探測一些低能β核素示蹤原子的放射性樣品,已廣泛的應用于工業、農業、生物醫學、分子生物學、環境科學、考古與地質構造等領域科研工作中的核素示蹤與核輻射測量。主要包括以下幾個方面:1 、細胞與分子生物學主要利用3H、14C、32P等放射性核素進行體內或體外標記,研究細胞生物體內核酸、
液體閃爍計數器的應用
液體閃爍計數器主要用于探測一些低能β核素示蹤原子的放射性樣品,已廣泛的應用于工業、農業、生物醫學、分子生物學、環境科學、考古與地質構造等領域科研工作中的核素示蹤與核輻射測量。主要包括以下幾個方面:1 、細胞與分子生物學主要利用3H、14C、32P等放射性核素進行體內或體外標記,研究細胞生物體內核酸、
液體閃爍計數器的功用
液體閃爍計數器(liquid scintillation counter)是使用液體閃爍體(閃爍液)接受射線并轉換成熒光光子的放射性計量儀。液體閃爍計數器主要測定發生β核衰變的放射性核素,尤其對低能β更為有效。
簡述液體閃爍計數的探測機理
閃爍液產生光子的過程是,從放射源發出的射線能理,首先被溶劑分子吸收,使溶劑分子激發。這種激發能量在溶劑內傳播時,即傳遞給閃爍體(溶質),引起閃爍體分子的激發,當閃爍體分子回到基態時就發射出光子,該光子透過透明的閃閃爍液及樣品的瓶壁,被光電倍增管的光陰極接收,繼而產生光電子并通過光電倍增管的倍增管
液體閃爍計數均相樣品的制備
脂溶性樣品可直接加入甲苯、二甲苯系統的閃爍液,含水量小于3%的樣品,仍應用甲苯、二甲苯系統的閃爍液,但需加入乙醇或甲醇或乙二醇乙醚等極性溶劑助溶,助溶劑與甲苯的比例通常為3:7。必需時加抵消部分淬滅作用,提高計數效率,含水量再大時,最好采用100毫升乙二醇乙醚。20毫升乙二醇,8克PPO,500
晶體閃爍計數探測裝置相關介紹
一個供探測γ光子用的固體晶體裝置包括一個“密閉的”鉈激活碘化鈉晶體,安放在光電倍增管的表面上。“密閉的”晶體上是一塊固態圓筒狀的鉈激活碘化鈉,其頂部和四周都是用鋁層包裹以避免光和濕氣,因為碘化鈉晶體易吸潮,為改善反射性,碘化鈉晶體用一玻璃片密封,并同光電倍增管的表面直接接觸,其間加些硅油以達到光
液體閃爍計數器原理介紹及應用
1. 原理簡介 液體閃爍計數器主要測定發生β核衰變的放射性核素,尤其對低能β更為有效。其基本原理是依據射線與物質相互作用產生熒光效應。首先是閃爍溶劑分子吸收射線能量成為激發態,再回到基態時將能量傳遞給閃爍體分子,閃爍體分子由激發態回到基態時,發出熒光光子。熒光光子被光電倍增管(PM)接收轉
液體閃爍計數器的儀器的功能介紹
液體閃爍計數器(liquid scintillation counter)是使用液體閃爍體(閃爍液)接受射線并轉換成熒光光子的放射性計量儀。液體閃爍計數器主要測定發生β核衰變的放射性核素,尤其對低能β更為有效。
液體閃爍計數非均相樣品的制備的介紹
①乳狀液計數:表面活化合物Triton X-100是廣泛應用的乳化劑,其化學結構式: 它的親水端吸引水和其它極性分子,疏水端吸引甲苯等非極性分子。乳狀液的物理性能隨著水分的增加而改變。當甲苯閃爍液與Triton X-100按2:1(v/v’)組成的配方時,樣品水分在15%以下的乳狀液是透明的;隨
液體閃爍計數儀的特點和用途
中文名稱液體閃爍計數儀英文名稱liquid scintillation counter定 義將閃爍體溶解在適當的溶劑中,配制成閃爍液,然后將樣品置于閃爍液中進行放射性強度測量的儀器。由于樣品與閃爍液直接接觸,提高了對短射程射線的測量效率。應用學科生物化學與分子生物學(一級學科),方法與技術(二級學
液體閃爍計數器的儀器原理
其基本原理是依據射線與物質相互作用產生熒光效應。首先是閃爍溶劑分子吸收射線能量成為激發態,再回到基態時將能量傳遞給閃爍體分子,閃爍體分子由激發態回到基態時,發出熒光光子。熒光光子被光電倍增管(PM)接收轉換為光電子,再經倍增,在PM陽極上收集到好多光電子,以脈沖信號形式輸送出去。將信號符合、放大、分
液體閃爍計數器的主要應用
液體閃爍計數器主要用于探測一些低能β核素示蹤原子的放射性樣品,目前已廣泛的應用于工業、農業、生物醫學、分子生物學、環境科學、考古與地質構造等領域科研工作中的核素示蹤與核輻射測量。主要包括以下幾個方面: 1 細胞與分子生物學 主要利用、14C、P等放射性核素進行體內或體外標記,研究細胞生物體內
液體閃爍計數器-儀器原理簡介
液體閃爍計數器主要測定發生β核衰變的放射性核素,尤其對低能β更為有效。其基本原理是依據射線與物質相互作用產生熒光效應。首先是閃爍溶劑分子吸收射線能量成為激發態,再回到基態時將能量傳遞給閃爍體分子,閃爍體分子由激發態回到基態時,發出熒光光子。熒光光子被光電倍增管(PM)接收轉換為光電子,再經倍增,
液體閃爍計數樣品制備的因素有哪些?
流體閃爍測量的櫚制備是很重要的操作,操作的成功與否,直接影響到計數效率。樣品制備方法的選擇要考慮以下四個因素: Ⅰ.所測樣品的物理和化學特性,決定所用閃爍液類型和決定是否需要將樣品轉化為更適于測量的形式; Ⅱ.樣品所含的同位素的種類,對于含3H的樣品要更加注意; Ⅲ.預計的放射性水平,在樣
液體閃爍計數器的原理及其應用
儀器原理簡介液體閃爍計數器主要測定發生β核衰變的放射性核素,尤其對低能β更為有效。其基本原理是依據射線與物質相互作用產生熒光效應。首先是閃爍溶劑分子吸收射線能量成為激發態,再回到基態時將能量傳遞給閃爍體分子,閃爍體分子由激發態回到基態時,發出熒光光子。熒光光子被光電倍增管(PM)接收轉換為光電子,再
概述液體閃爍計數中的淬滅作用
放射能量在測量瓶內的傳遞和轉換過程越順利,測量效率越高。但事實上,影響能量傳遞過程順序進行的因素很多,它的每一環節都存在著對能量的爭奪過程,使得放射能減少,甚至發生能量傳遞的中斷,導致測量效率下降,這種現象稱為液體閃爍計數的淬滅。造成淬滅的因素很多,按淬滅性質歸納起來,有下列三種類型。 ⑴化學
液體閃爍計數器的主要功能介紹
液體閃爍計數器雖以測定低能β放射性核素為主,但近幾年來,隨著核技術應用領域的不斷拓展,還開發出許多其它領域的測試功能。該儀器一次可測300個樣,自動換樣、顯示、打印,有三個計數道,對3H計數效率大于60%,14C計數效率大于95%。液體閃爍計數器雖以測定低能β放射性核素為主,但近幾年來,隨著核技術應
閃爍型探測器的閃爍體相關介紹
閃爍體是一類能吸收能量,并能在大約一微秒或更短的時間內把所吸收的一部分能量以光的形式再發射出來的物質。閃爍體分為無機閃爍體和有機閃爍體兩大類,閃爍體必需具備的性能是:對自身發射的光子應是高度透明的。閃爍體吸收它自己發射的一部分光子所占的比例隨閃爍材料而變化。無機閃爍體【如NaI(Tl),ZnS(
液體閃爍計數器主要功能
液體閃爍計數器雖以測定低能β放射性核素為主,但近幾年來,隨著核技術應用領域的不斷拓展,還開發出許多其它領域的測試功能。該儀器一次可測300個樣,自動換樣、顯示、打印,有三個計數道,對3H計數效率大于60%,14C計數效率大于95%。?1 常用放射性核素測定 液閃計數器可用于3H、14C、32P、3
液體閃爍計數器的主要功能
液體閃爍計數器雖以測定低能β放射性核素為主,但近幾年來,隨著核技術應用領域的不斷拓展,還開發出許多其它領域的測試功能。該儀器一次可測300個樣,自動換樣、顯示、打印,有三個計數道,對3H計數效率大于60%,14C計數效率大于95%。1 、常用放射性核素測定液閃計數器可用于3H、14C、32P、33P
液體閃爍計數器的主要功能
液體閃爍計數器雖以測定低能β放射性核素為主,但近幾年來,隨著核技術應用領域的不斷拓展,還開發出許多其它領域的測試功能。該儀器一次可測300個樣,自動換樣、顯示、打印,有三個計數道,對3H計數效率大于60%,14C計數效率大于95%。1 、常用放射性核素測定液閃計數器可用于3H、14C、32P、33P
液體閃爍計數器的基本原理
液體閃爍計數器主要測定發生β核衰變的放射性核素,尤其對低能β更為有效。其基本原理是依據射線與物質相互作用產生熒光效應。首先是閃爍溶劑分子吸收射線能量成為激發態,再回到基態時將能量傳遞給閃爍體分子,閃爍體分子由激發態回到基態時,發出熒光光子。熒光光子被光電倍增管(PM)接收轉換為光電子,再經倍增,在P
液體閃爍計數器的基本原理
基本原理是依據射線與物質相互作用產生熒光效應。首先是閃爍溶劑分子吸收射線能量成為激發態,再回到基態時將能量傳遞給閃爍體分子,閃爍體分子由激發態回到基態時,發出熒光光子。熒光光子被光電倍增管(PM)接收轉換為光電子,再經倍增,在PM陽極上收集到好多光電子,以脈沖信號形式輸送出去。將信號符合、放大、分析
全自動液體閃爍計數器的技術性能介紹
全自動液體閃爍計數器用于3H和14C等低能射線測量,廣泛應用于環保、衛生防疫、水文、地質、考古、海洋等領域。 主要技術性能 對3H探測效率:50% 本底計數:40cpm 對14C探測效率:90% 本底計數:60cpm 多種工作方式:COM測量、D