大連化物所發展出抑制光催化分解水制氫逆反應新技術
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室、太陽能研究部中科院院士李燦、博士后李政和研究員李仁貴等,在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展,確認光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從而顯著提升了光催化完全分解水的性能。 太陽能光催化完全分解水制氫具有重要的應用背景,更是基礎科學領域的前沿課題。其中,光催化完全分解水體系中助催化劑表面的氫氧逆反應是該領域長期未解決的重要問題。逆反應的存在使得完全分解水光催化體系的效率很低,甚至無法實現分解水反應,是光催化完全分解水的“最后一公里”。李燦團隊長期致力于光催化分解水中助催化劑及其表面的催化作用研究,取得系列重要進展【在國際上較早提出并發展了雙助催化劑概念(J. Catal.、Catal. Lett.、Acc. Chem. Res.、Energy Environ. Sc......閱讀全文
大連化物所發展抑制光催化分解水制氫逆反應新技術
近日,大連化物所催化基礎國家重點實驗室、太陽能研究部(DNL16)李燦院士、博士后李政和李仁貴研究員等在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展,確認光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從而顯著提升了光催
大連化物所發展出抑制光催化分解水制氫逆反應新技術
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室、太陽能研究部中科院院士李燦、博士后李政和研究員李仁貴等,在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展,確認光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從
大連化物所發展出抑制光催化分解水制氫逆反應新技術
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室、太陽能研究部中科院院士李燦、博士后李政和研究員李仁貴等,在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展,確認光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從
大連化物所發展出抑制光催化分解水制氫逆反應新技術
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室、太陽能研究部中科院院士李燦、博士后李政和研究員李仁貴等,在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展,確認光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從
大連化物所寬光譜響應光催化分解水制氫研究獲進展
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室太陽能研究部研究員、中科院院士李燦和研究員章福祥、陳閃山等與日本東京大學教授Kazunari Domen課題組合作,在可見光驅動光催化Z機制完全分解水制氫研究中取得進展。研究結果發現,經一步氮化合成的MgTa2O6?xN
新技術抑制光催化分解水制氫逆反應
原文地址:http://news.sciencenet.cn/htmlnews/2023/1/492771.shtm 近日,中科院大連化物所催化基礎國家重點實驗室、太陽能研究部(DNL16)李燦院士、博士后李政和李仁貴研究員等在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研
大連化物所表面異相結促進光催化分解水制氫研究獲進展
近日,中科院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室李燦院士領導的研究團隊在“太陽能光催化分解水制氫”研究方面取得重要進展。在以Ga2O3為基礎的半導體催化劑研究中,發現當其表面形成α晶相與β晶相的相結時,可以大幅提高光催化分解水的活性。進一步的時間分辨光譜研
大連化物所:提出光催化生物質制氫新策略
近日,大連化物所生物能源化學品研究組(DNL0603組)王峰研究員、羅能超副研究員團隊與的里雅斯特大學Paolo Fornasiero教授團隊合作,在光催化生物質制氫方面取得新進展。團隊提出一種“C-C鍵優先”的策略,利用Ta摻雜的CeO2將生物多元醇和糖的C-C鍵完全斷裂轉化到甲酸、甲醛等C1
大連化物所電解水制氫研究取得進展
近日,中國科學院院士、中國科學院大連化學物理研究所基礎國家重點實驗室和太陽能研究部研究員李燦領導的團隊開發的新一代電解水催化劑,在蘇州競立制氫設備有限公司及考克利爾競立(蘇州)氫能科技有限公司制造的規模化堿性電解水制氫中試示范工程設備上實現了穩定運行。經過在額定工況條件下長時間的運行驗證,電解水
我所發展抑制光催化分解水制氫逆反應新技術
近日,我所催化基礎國家重點實驗室、太陽能研究部(DNL16)李燦院士、博士后李政和李仁貴研究員等在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展,確認光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從而顯著提升了光催化
大連化物所發現絕緣體表面光催化重整甲醇制氫反應
近年來,太陽能光催化分解水研究受到世界范圍的廣泛關注。導體光催化劑上分解水的基本原理是光催化劑受到光激發后產生光生電子與空穴,光生電子與空穴分離并遷移至光催化劑表面進而發生氧化還原反應。傳統的光催化或光化學反應發生的前提條件要求光催化劑或參與光化學反應的分子被激發光所激發,而傳統的絕緣體材料(以
研究人員提出“氫農場”新策略
中科院大連化物所提出“氫農場”新策略 近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室院士李燦、研究員李仁貴等在太陽能可規模化分解水制氫方面取得新進展,率先提出并驗證了一種全新的“氫農場”策略,該策略基于粉末納米顆粒光催化劑太陽能分解水制氫,太陽能光催化全分解水制氫效率創國際最高記錄。研究
大連化物所肼分解制氫研究取得新進展
中科院大連化物所研究員黃延強和張濤院士在肼分解制氫研究方面的工作受到了國際同行的廣泛關注,近期受邀在《國家科學評論》發表了綜述文章。圖片來源于網絡 肼(N2H4)是一種重要的液體推進劑,在催化劑作用下能夠在室溫下被迅速分解,產生高溫高壓的氣體,實現化學能向動能的轉變。 研究人員長期致力于肼分
大連化物所肼分解制氫研究取得新進展
利用新型鎳-氧化鋁催化劑分解肼制氫過程 近日,中科院大連化學物理研究所張濤研究員領導的研究團隊在肼分解制氫反應中取得重要進展。他們首次采用廉價的鎳催化劑,在室溫條件下實現了水合肼高效分解制氫。研究結果以通訊形式發表在Angew. Chem. Int. Ed.d.上。 肼(N
新技術提升光催化完全分解水制氫效率
中科院大連化學物理研究所催化基礎國家重點實驗室李燦院士、李政博士后和李仁貴研究員等,在納米顆粒光催化完全分解水制氫的逆反應(氫氣和氧氣復合生成水的反應)研究方面取得新進展。團隊確認了光催化完全分解水逆反應發生于低配位活性位點,并利用原子層沉積技術精準定點修飾抑制逆反應,從而顯著提升了光催化完全分
大連化物所太陽能光電催化分解水制氫研究獲進展
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室及潔凈能源國家實驗室李燦院士領導的太陽能研究團隊在“太陽能光電催化分解水制氫”研究方面取得新進展。在以Ta3N5為基礎的半導體光陽極研究中,發現“空穴儲存層”電容效應,藉此設計并獲得了高效穩定的太陽能光電化學分解水體系,相關研究成果以通訊形
大連化物所兆瓦級PEM電解水制氫系統等交付投運
近日,中科院大連化學物理研究所(以下簡稱大連化物所)研究員邵志剛團隊研制的、具有自主知識產權的兆瓦級質子交換膜(PEM)電解水制氫系統、兆瓦級氫質子交換膜燃料電池發電系統順利通過工程驗收,并交付國網安徽省電力有限公司(以下簡稱國網安徽),正式投入運行。這標志著我國擁有自主知識產權的兆瓦級PEM電
大連化物所在太陽能光催化分解水研究中取得進展
因為世界范圍的能源和環境問題,近年來利用太陽能光催化分解水制氫和還原二氧化碳的研究在國際學術界引起廣泛的重視。光催化分解水被認為是化學科學領域“圣杯”式的難題,一旦取得突破,有望影響世界能源格局。 中國科學院院士李燦領導的中科院大連化學物理研究所潔凈能源國家實驗室太陽能部研究團隊長期從事人工光
大連化物所太陽能光催化分解水研究取得新進展
由于世界范圍的能源和環境問題,近年來光催化分解水制氫和還原二氧化碳的研究在國際學術界引起廣泛的重視。光催化分解水被認為是最具挑戰性的難題,一旦取得突破,有望影響世界能源格局。實現這個反應的關鍵是發展高效的光催化劑,進而構筑高效光催化或光電催化體系。 近日,中國科學院大連化學物理研究所李燦院
大連化物所極性誘導的空間電荷分離促進光催化全分解水
近日,中國科學院大連化學物理研究所催化基礎國家重點實驗室中科院院士李燦、研究員李仁貴等與中科院半導體研究所研究員閆建昌團隊合作,在人工光合成體系光生電荷分離研究方面取得新進展:發現極性誘導的表面電場有效促進了光生電荷的空間分離,并大幅提升光催化全分解水的活性。 除了晶體形貌和晶面可以被用來調控
大連化物所在太陽能光催化分解水研究取得新進展
因為世界范圍的能源和環境問題,近年來利用太陽能光催化分解水制氫和還原二氧化碳的研究在國際學術界引起廣泛的重視。光催化分解水被認為是化學科學領域“圣杯”式的難題,一旦取得突破,有望影響世界能源格局。 李燦院士領導的潔凈能源國家實驗室太陽能部研究團隊長期從事人工光合成太陽燃料的研究,近年來取得了
大連化物所實現半導體光催化硼化反應
近日,中國科學院大連化學物理研究所精細化工研究室有機硼化學與綠色氧化創新特區研究組研究員戴文團隊,在多相光催化硼化方面取得新進展。該團隊選用易于制備的硫化鎘納米片作為多相光催化劑,利用光生電子—空穴的協同氧化還原作用,通過選擇性硼化反應,實現了烯烴、炔烴、亞胺以及芳(雜)環的高值轉化,合成了硼氫化和
大連化物所儲氫材料研究獲進展
近日,中國科學院大連化學物理研究所復合氫化物材料化學研究組研究員陳萍、吳國濤團隊在儲氫材料研究方面取得新進展,通過多組分氫化物復合,顯著改善了Mg(NH2)2-LiH儲氫材料的吸脫氫熱力學和動力學性能,實現了100℃以下可逆吸脫氫,相關研究成果發表在《先進能源材料》(Advanced Energ
哈工大在光催化分解水制氫研究方面取得新進展
氫能已被普遍認為是一種理想、無污染的綠色能源,其燃燒值高且燃燒后唯一的產物是水,對環境不會造成任何污染,因此,氫能開發是解決能源危機和環境問題的理想途徑。在眾多氫能開發的手段和途徑中,通過光催化劑,利用太陽能光催化分解水制氫是最為理想和最有前途的手段之一;而開發高效、廉價的實用光催化劑是實現
李燦院士團隊在復合光催化體系領域研究引關注
近日,中科院大連化物所李燦院士團隊撰寫的綜述文章——《助催化劑在光催化和光電催化中的作用》在《化學研究述評》上發表。這是第一篇比較系統闡述光催化和光電催化體系中助催化劑作用的文章。該團隊在基于“結”與“助催化劑”構建光催化體系方面的系列研究引起國際同行關注。 利用自然界豐富的太陽能制氫,有
新方法可觀察評估光催化活性,有助于水裂解制氫
用飛秒脈沖激光輻照二氧化鈦及其表面吸附的染料,從染料分子轉移到二氧化鈦表面,觀察到去質子化染料的熒光。圖片來源:J. Phys. Chem. C. 2021 American Chemical Society. 光催化劑是水裂解制氫的重要組成部分。日本信州大學和佐治亞理工學院的科學家致力于改進
提升寬光譜捕光催化劑全分解水制氫的量子效率
近日,大連化物所太陽能研究部(DNL16)李燦院士、章福祥研究員、祁育副研究員等人在利用寬光譜捕光催化劑構筑全分解水制氫體系研究方面取得新進展,基于BiVO4可見光催化劑不同晶面雙助催化劑的優化開發及其選擇性負載,顯著提升了其用于水氧化和“Z”機制全分解水制氫性能,使全分解水制氫量子效率達到12.3
中國科大廣譜分解水制氫的光催化劑研究獲進展
氫能是一種非常清潔且可儲存運輸的可再生能源,利用太陽能分解水制備氫氣已成為一種備受關注的清潔新能源技術。無機半導體材料是目前應用最廣的光催化活性物質,通常高光催化活性的半導體都具有寬帶隙,使其只能吸收紫外光等短波太陽光,而紫外光只占太陽光全譜的5%左右,造成了充分利用太陽能的困難。因此,非常有必
新方法可觀察評估光催化活性,有助于水裂解制氫
光催化劑是水裂解制氫的重要組成部分。日本信州大學和佐治亞理工學院的科學家致力于改進2020年發表的一項鈦表面研究。先關研究近日發表于《物理化學雜志C》。 用飛秒脈沖激光輻照二氧化鈦及其表面吸附的染料,從染料分子轉移到二氧化鈦表面,觀察到去質子化染料的熒光。 在紫外光的照射下,二氧化鈦光催化劑
電解水制氫的原理
電解水制氫的原理:2H2O=(通電) 2H2+O2(兩種氣體都該標氣體符號)氫氧化鈉在其中起作用是:增強導電性,因為純水是弱電解質,導電性不好,氫氧化鈉是強電解質,增加導電性!