生物芯片的技術特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量......閱讀全文
生物芯片技術特點
20世紀90年代初開始實施的人類基因組計劃(Human genome project,HGP)取得了人們當初意料不到的巨大進展。目前已經測定了十多種微生物以及高等動植物的全基因組序列,海量的基因序列數據正在以前所未有的速度膨脹。一個現實的科學問題擺到了人們面前:如何研究如此眾多基因在生命過程中所
生物芯片的技術特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片的技術特點
生物芯片是將生命科學研究中所涉及的不連續的分析過程(如樣品制備、化學反應和分析檢測),利用微電子、微機械、化學、物理技術、計算機技術在固體芯片表面構建的微流體分析單元和系統,使之連續化、集成化、微型化。
生物芯片技術的主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片技術的主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片的簡介、應用領域、技術特點介紹
生物芯片(biochip)是指采用光導原位合成或微量點樣等方法,將大量生物大分子比如核酸片段、多肽分子甚至組織切片、細胞等等生物樣品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝膠、尼龍膜等載體)的表面,組成密集二維分子排列,然后與已標記的待測生物樣品中靶分子雜交,通過特定的儀器比如激光共聚焦掃
生物芯片技術
生物芯片技術是通過縮微技術,根據分子間特異性地相互作用的原理,將生命科學領域中不連續的分析過程集成于硅芯片或玻璃芯片表面的微型生物化學分析系統,以實現對細胞、蛋白質、基因及其它生物組分的準確、快速、大信息量的檢測。按照芯片上固化的生物材料的不同,可以將生物芯片劃分為基因芯片、蛋白質芯片、多糖芯片和神
生物芯片技術
一、 概述:?????生物芯片這一名詞最早是在80年代初提出的,主要指分子電子器件。美國海軍實驗室研究員Carter 等試圖把有機功能分子或生物活性分子進行組裝,想構建微功能單元,實現信息的獲取、貯存、處理和傳輸等功能。用以研制仿生信息處理系統和生物計算機。產生了"分子電子學"同時取得了一些重要進展
生物芯片技術的技術要點
生物芯片技術主要包括四個基本要點:芯片方陣的構建、樣品的制備、生物分子反應和信號的檢測。1、芯片制備,先將玻璃片或硅片進行表面處理,然后使DNA片段或蛋白質分子按順序排列在芯片上。2、樣品制備,生物樣品往往是非常復雜的生物分子混合體,除少數特殊樣品外,一般不能直接與芯片反應。可將樣品進行生物處理,獲
生物芯片技術的技術要點
芯片方陣的構建、樣品的制備、生物分子反應和信號的檢測。1、芯片制備,先將玻璃片或硅片進行表面處理,然后使DNA片段或蛋白質分子按順序排列在芯片上。2、樣品制備,生物樣品往往是非常復雜的生物分子混合體,除少數特殊樣品外,一般不能直接與芯片反應。可將樣品進行生物處理,獲取其中的蛋白質或DNA、RNA,并
生物芯片的技術起源
生物芯片,又稱蛋白芯片或基因芯片,它們起源于DNA雜交探針技術與半導體工業技術相結合的結晶。該技術系指將大量探針分子固定于支持物上后與帶熒光標記的DNA或其他樣品分子(例如蛋白,因子或小分子)進行雜交,通過檢測每個探針分子的雜交信號強度進而獲取樣品分子的數量和序列信息。
生物芯片的技術細分
一個完整的生物芯片至少要能完成生化反應和信號傳感,并且把相關信號能通過某種方法傳輸到外界。 傳感器可以說是生物芯片的核心技術,它決定了生物芯片能參與什么樣的生化反應,能檢測什么樣的信號,這就直接決定了生物芯片能應用的領域。生物芯片的傳感部分使用的器件會和傳統的CMOS有所不同,例如之前我們提到
生物芯片技術的定義
生物芯片(biochip)是指采用光導原位合成或微量點樣等方法,將大量生物大分子比如核酸片段、多肽分子甚至組織切片、細胞等等生物樣品有序地固化于支持物的表面,組成密集二維分子排列,然后與已標記的待測生物樣品中靶分子雜交,通過特定的儀器對雜交信號的強度進行快速、并行、高效地檢測分析,從而判斷樣品中
生物芯片技術的簡介
目前,最成功的生物芯片形式是以基因序列為分析對象的“微陣列(microarray)”,也被稱為基因芯片(Gene chip)或DNA芯片(DNA chip)。1998年6月美國宣布正式啟動基因芯片計劃,聯合私人投資機構投入了20億美元以上的研究經費。世界各國也開始加大投入,以基因芯片為核心的相關
生物芯片技術的起源
生物芯片技術起源于核酸分子雜交。所謂生物芯片一般指高密度固定在互相支持介質上的生物信息分子(如基因片段、DNA片段或多肽、蛋白質、糖分子、組織等)的微陣列雜交型芯片(micro-arrays),陣列中每個分子的序列及位置都是已知的,并且是預先設定好的序列點陣。微流控芯片(microfluidic c
生物芯片技術的分類
生物芯片雖然只有10多年的歷史,但包含的種類較多,分類方式和種類也沒有完全的統一。用途分類(1)生物電子芯片:用于生物計算機等生物電子產品的制造。(2)生物分析芯片:用于各種生物大分子、細胞、組織的操作以及生物化學反應的檢測。前一類目前在技術和應用上很不成熟,一般情況下所指的生物芯片主要為生物分析芯
生物芯片技術的起源
生物芯片技術起源于核酸分子雜交。所謂生物芯片一般指高密度固定在互相支持介質上的生物信息分子(如基因片段、DNA片段或多肽、蛋白質、糖分子、組織等)的微陣列雜交型芯片(micro-arrays),陣列中每個分子的序列及位置都是已知的,并且是預先設定好的序列點陣。微流控芯片(microfluidic c
生物芯片技術的應用
生物芯片(biochip)是指采用光導原位合成或微量點樣等方法,將大量生物大分子比如核酸片段、多肽分子甚至組織切片、細胞等等生物樣品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝膠、尼龍膜等載體)的表面,組成密集二維分子排列,然后與已標記的待測生物樣品中靶分子雜交,通過特定的儀器比如激光共聚焦掃描或
生物芯片的技術核心
所有的生物芯片技術都包含四個基本要點:芯片的制作、雜交或反應、測定或掃描、數據處理。生物芯片的技術核心是芯片的制備及反應信號的檢測。 1、芯片制備技術 目前制備芯片的方法基本上可分為兩大類:一類是原位合成(in situ Synthesis);一類是合成后交聯(post-synthesis at
生物芯片的主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片的主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片技術的技術前景
基因芯片用途廣泛,在生命科學研究及實踐、醫學科研及臨床、藥物設計、環境保護、農業、軍事等各個領域有著廣泛的用武之地。這些無疑將會產生巨大的社會和經濟效益。有著廣泛的經濟、社會及科研前景。因此,國際上一些著名的政治家,投資者和科學家均看好這一技術前景。認為基因芯片以及相關產品產值有可能超過微電子芯
生物芯片技術的技術前景
基因芯片用途廣泛,在生命科學研究及實踐、醫學科研及臨床、藥物設計、環境保護、農業、軍事等各個領域有著廣泛的用武之地。這些無疑將會產生巨大的社會和經濟效益。有著廣泛的經濟、社會及科研前景。因此,國際上一些著名的政治家,投資者和科學家均看好這一技術前景。認為基因芯片以及相關產品產值有可能超過微電子芯片,
生物芯片主要特點
高通量提高實驗進程,利于顯示圖譜的快速對照和閱讀微型化減少試劑用量和反應液體積,提高樣品濃度和反應速度自動化減低成本和保證質量
生物芯片技術定義
生物芯片(biochip)是指采用光導原位合成或微量點樣等方法,將大量生物大分子比如DNA 芯片熒光掃描分析圖核酸片段、多肽分子甚至組織切片、細胞等等生物樣品有序地固化于支持物的表面,組成密集二維分子排列,然后與已標記的待測生物樣品中靶分子雜交,通過特定的儀器對雜交信號的強度進行快速、并行、高效地檢
生物芯片技術簡介
目前,最成功的生物芯片形式是以基因序列為分析對象的“微陣列(microarray)”,也被稱為基因芯片(Gene chip)或DNA芯片(DNA chip)。1998年6月美國宣布正式啟動基因芯片計劃,聯合私人投資機構投入了20億美元以上的研究經費。世界各國也開始加大投入,以基因芯片為核心的相關產業
生物芯片技術對比
采用表達譜基因芯片研究基因表達與傳統的Northern Blot相比有許多重要的優點:檢測系統的微型化,對樣品等需要量非常小同時研究上萬個基因的表達變化,研究效率明顯提高能更多地揭示基因之間表達變化的相互關系,從而研究基因與基因之間內在的作用關系檢測基因表達變化的靈敏度高,可檢測豐度相差幾個數量級的
生物芯片技術介紹
生物芯片,又稱蛋白芯片或基因芯片,它們起源于DNA雜交探針技術與半導體工業技術相結合的結晶。該技術系指將大量探針分子固定于支持物上后與帶熒光標記的DNA或其他樣品分子(例如蛋白,因子或小分子)進行雜交,通過檢測每個探針分子的雜交信號強度進而獲取樣品分子的數量和序列信息。
生物芯片技術技術前景
基因芯片用途廣泛,在生命科學研究及實踐、醫學科研及臨床、藥物設計、環境保護、農業、軍事等各個領域有著廣泛的用武之地。這些無疑將會產生巨大的社會和經濟效益。有著廣泛的經濟、社會及科研前景。因此,國際上一些著名的政治家,投資者和科學家均看好這一技術前景。認為基因芯片以及相關產品產值有可能超過微電子芯片,
生物芯片的技術原理和技術流派
生物芯片(biochip或bioarray)是根據生物分子間特異相互作用的原理,將生化分析過程集成于芯片表面,從而實現對DNA、RNA、多肽、蛋白質以及其他生物成分的高通量快速檢測。狹義的生物芯片概念是指通過不同方法將生物分子(寡核苷酸、cDNA、genomic DNA、多肽、抗體、抗原等)固著于硅