新型納米力學成像探針實現原子力顯微鏡下DNA的直讀檢測和高分辨成像 近日,中國科學院上海應用物理研究所物理生物學研究室與上海交通大學、南京郵電大學合作,基于DNA納米技術發展了一系列DNA折紙結構并作為納米力學成像探針,實現了原子力顯微鏡下對基因組DNA的直讀檢測和高分辨成像。相關結果發表于《自然-通訊》(Nature Communications 2017, 8, 14738)。DNA折紙結構是利用DNA堿基互補配對原則,通過程序性設計將M13 DNA在上百條DNA短鏈的輔助下折疊成指定幾何形狀。上海應物所博士張宏陸等在研究員樊春海指導下,并與晁潔、師詠勇等合作,通過設計DNA折紙結構作為原子力顯微鏡的納米力學成像探針,在單分子水平下實現了對DNA分子的特異性標記和單核苷酸變異性(SNP)的直讀檢測。相較于基于熒光成像的直讀方法,這種新技術將分辨率提升一個數量級,可達到遠超光學衍射極限的10納米分辨。基于DN......閱讀全文
新型納米力學成像探針實現原子力顯微鏡下DNA的直讀檢測和高分辨成像 近日,中國科學院上海應用物理研究所物理生物學研究室與上海交通大學、南京郵電大學合作,基于DNA納米技術發展了一系列DNA折紙結構并作為納米力學成像探針,實現了原子力顯微鏡下對基因組DNA的直讀檢測和高分辨成像。相關結果發表于《
近日,中國科學院上海應用物理研究所物理生物學研究室與上海交通大學、南京郵電大學合作,基于DNA納米技術發展了一系列DNA折紙結構并作為納米力學成像探針,實現了原子力顯微鏡下對基因組DNA的直讀檢測和高分辨成像。相關結果發表于《自然-通訊》(Nature Communications 2017,
近日,中國科學院上海應用物理研究所物理生物學研究室與上海交通大學、南京郵電大學合作,基于DNA納米技術發展了一系列DNA折紙結構并作為納米力學成像探針,實現了原子力顯微鏡下對基因組DNA的直讀檢測和高分辨成像。相關結果發表于《自然-通訊》(Nature Communications 2017,
近日,中國科學院上海應用物理研究所物理生物學研究室與上海交通大學、南京郵電大學合作,基于DNA納米技術發展了一系列DNA折紙結構并作為納米力學成像探針,實現了原子力顯微鏡下對基因組DNA的直讀檢測和高分辨成像。相關結果發表于《自然-通訊》(Nature Communications 2017,
原子力顯微鏡探針、原子力顯微鏡及探針的制備方法。原子力顯微鏡探針包括探針本體和設置在探針本體的針尖一側的接觸體,接觸體具有連接段和接觸段,接觸段具有接觸端面;接觸段為二維材料,且接觸端面為原子級光滑且平整的單晶界面。本發明專利技術的原子力顯微鏡探針可精確地檢測受測樣品的各種性質。介紹隨著微米納米科學
原子力顯微鏡(atomic force microscope, AFM)是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。1981年,STM(scanning tunneling microscopy, 掃描隧道顯微鏡)由IBM-Zuric
原子力顯微鏡(AFM),是一種具有原子分辨率的表面形貌、電磁性能分析的重要儀器。首臺原子力顯微鏡在1985年研發成功,其模式可分為接觸模式和輕敲模式等多種模式。AFM探針由于應用范圍僅限于原子力顯微鏡,屬于高科技儀器的耗材,應用領域不廣,全世界的使用量也不多。主要的生產廠家分布在德國,瑞士,保加
原子力顯微鏡是顯微鏡中的一種類型,應用范圍十分廣泛。是一種可用來研究包括絕緣體在內的固體材料表面結構的分析儀器。原子力顯微鏡三種成像模式 當原子力顯微鏡成像模式的針尖與樣品表面原子相互作用時,通常有幾種力同時作用于微懸臂,其中最主要的是范德瓦爾斯力。當針尖與樣品表面原子
原子力顯微鏡的主要工作模式有靜態模式和動態模式兩種。在靜態模式中,懸臂從樣品表面劃過,從懸臂的偏轉可以直接得知表面的高度圖。在動態模式中,懸臂在其基頻或諧波或附近振動,而其振幅、相位和共振與探針和樣品間的作用力相關,這些參數相對外部參考的振動的改變可得出樣品的性質。 接觸模式 在靜態模式中,
原子力顯微鏡(atomic force microscope,簡稱AFM),也稱掃描力顯微鏡(scanning force microscope,SFM)是一種納米級高分辨的掃描探針顯微鏡,優于光學衍射極限1000倍。原子力顯微鏡的前身是掃描隧道顯微鏡,是由IBM蘇黎士研究實驗室的海因里希·羅雷