天然聚合物多從自然植物經物理或化學方法制取,合成聚合物由低分子單體通過聚合反應制得。聚合方法通常有本體(熔融)聚合、溶液聚合、乳液聚合和懸浮聚合等,依據對聚合物的使用性能要求可對不同的方法進行選擇,如帶官能團的單體聚合常采用溶液或熔融聚合法。研究聚合過程的反應工程學科分支稱為聚合反應工程學。聚合物加工成各種制品的過程,主要包括塑料加工、橡膠加工和化學纖維紡絲,這三者的共性研究體現為聚合物流變學。......閱讀全文
天然聚合物多從自然植物經物理或化學方法制取,合成聚合物由低分子單體通過聚合反應制得。聚合方法通常有本體(熔融)聚合、溶液聚合、乳液聚合和懸浮聚合等,依據對聚合物的使用性能要求可對不同的方法進行選擇,如帶官能團的單體聚合常采用溶液或熔融聚合法。研究聚合過程的反應工程學科分支稱為聚合反應工程學。聚合
高分子聚合物指由鍵重復連接而成的高分子量(通常可達10~106)化合物。包括晶態結構、非晶態結構、取向態結構以及織態結構。 人類利用天然聚合物的歷史久遠,直到19世紀中葉才跨入對天然聚合物的化學改性工作,1839年C.Goodyear發現了橡膠的硫化反應,從而使天然橡膠變為實用的工程材料的研究
1870年J.W.Hyatt用樟腦增塑硝化纖維素,使硝化纖維塑料實現了工業化。1907年L.Baekeland報道了合成第一個熱固性酚醛樹脂,并在20世紀20年代實現了工業化,這是第一個合成塑料產品。1920年H.Standinger提出了聚合物是由結構單元通過普通的共價鍵彼此連接而成的長鏈分子
聚集態結構是指高聚物分子鏈之間的幾何排列和堆砌結構,結構規整或鏈次價力較強的聚合物容易結晶,例如,高密度聚乙烯、全同聚丙烯和聚酰胺等。結晶聚合物中往往存在一定的無定型區,即使是結晶度很高的聚合物也存在晶體缺陷,熔融溫度是結晶聚合物使用的上限溫度。結構不規整或鏈間次價力較弱的聚合物(如聚氯乙烯、聚
⑴高分子的大小:對高分子大小的量度,最常用的是分子量。由于聚合反應的復雜性,因而聚合物的分子量不是均一的,只能用統計平均值來表示,例如數均分子量和重均分子量。分子量對高聚物材料的力學性能以及加工性能有重要影響,聚合物的分子量或聚合度只有達到一定數值后,才能顯示出適用的機械強度,這一數值稱為臨界聚
可以從不同的角度對聚合物進行分類,如從、加熱行為、聚合物結構等。 按分子主鏈的元素結構,可將聚合物分為碳鏈、雜鏈和元素有機三類。 碳鏈聚合物大分子主鏈完全由碳原子組成。絕大部分烯類和二烯類聚合物屬于這一類,如聚乙烯、聚苯乙烯、聚氯乙烯等。 雜鏈聚合物大分子主鏈中除碳原子外,還有氧、氮、硫等
高分子化合物在形成溶液時,與低分子量的物質明顯不同的是要經過溶脹(swelling)的過程,即溶劑分子慢慢進入卷曲成團的高分子化合物分子鏈空隙中去,導致高分子化合物舒展開來,體積成倍甚至數十倍的增長。不少高分子化合物與水分子有很強的親和力,分子周圍形成一層水合膜,這是高分子化合物溶液具有穩定性的
鏈結構又分為近程結構和遠程結構。近程結構包括構造與構型,構造指鏈中原子的種類和排列、取代基和端基的種類、單體單元的排列順序、支鏈的類型和長度等。構型是指某一原子的取代基在空間的排列。近程結構屬于化學結構,又稱一級結構。遠程結構包括分子的大小與形態、鏈的柔順性及分子在各種環境中所采取的構象。遠程結
根據波茲曼 (Boltzmann)分布,分子在室溫時基本上處于 電子能級的基態。當吸收了紫外-可見光后,基態分子中的電子只能躍遷到激發單重態的各個不同振動-轉動能級,根據自旋禁阻選律, 不能直接躍遷到激發三重態的各個振動-轉動能級。 處于激發態的分子是不穩定的,通常以輻射躍遷和無輻射躍遷等方式
超聲波均質機早應用應當是用超聲來粉碎細胞壁,以釋放出其內容物。低強度超聲可以促進生化反應過程,如用超聲照射液體營養基可增加藻類細胞的生長速度,從而使這些細胞產生蛋白質的量增加3倍。 超聲波納米級攪拌器由超聲波振動部件和超聲波專用驅動電源和反應釜三大部分構成。超聲波振動部件主要包括超聲波換能器、